Tolérance aux fautes pour la perception multi-capteurs : application à la localisation d'un véhicule intelligent.

Auteurs
Date de publication
2014
Type de publication
Thèse
Résumé La perception est une entrée fondamentale des systèmes robotiques, en particulier pour la localisation, la navigation et l'interaction avec l'environnement. Or les données perçues par les systèmes robotiques sont souvent complexes et sujettes à des imprécisions importantes. Pour remédier à ces problèmes, l'approche multi-capteurs utilise soit plusieurs capteurs de même type pour exploiter leur redondance, soit des capteurs de types différents pour exploiter leur complémentarité afin de réduire les imprécisions et les incertitudes sur les capteurs. La validation de cette approche de fusion de données pose deux problèmes majeurs.Tout d'abord, le comportement des algorithmes de fusion est difficile à prédire,ce qui les rend difficilement vérifiables par des approches formelles. De plus, l'environnement ouvert des systèmes robotiques engendre un contexte d'exécution très large, ce qui rend les tests difficiles et coûteux. L'objet de ces travaux de thèse est de proposer une alternative à la validation en mettant en place des mécanismes de tolérance aux fautes : puisqu'il est difficile d'éliminer toutes les fautes du système de perception, on va chercher à limiter leurs impacts sur son fonctionnement. Nous avons étudié la tolérance aux fautes intrinsèquement permise par la fusion de données en analysant formellement les algorithmes de fusion de données, et nous avons proposé des mécanismes de détection et de rétablissement adaptés à la perception multi-capteurs. Nous avons ensuite implémenté les mécanismes proposés pour une application de localisation de véhicules en utilisant la fusion de données par filtrage de Kalman. Nous avons finalement évalué les mécanismes proposés en utilisant le rejeu de données réelles et la technique d'injection de fautes, et démontré leur efficacité face à des fautes matérielles et logicielles.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr