Complétion de matrices : aspects statistiques et computationnels.

Auteurs
  • LAFOND Jean
  • MOULINES Eric
  • SALMON Joseph
  • CLEMENCON Stephan
  • MOULINES Eric
  • KLOPP Olga
  • JUDITSKY Anatoli
  • RIVOIRARD Vincent
Date de publication
2016
Type de publication
Thèse
Résumé Dans cette thèse nous nous intéressons aux méthodes de complétion de matrices de faible rang et étudions certains problèmes reliés. Un premier ensemble de résultats visent à étendre les garanties statistiques existantes pour les modèles de complétion avec bruit additif sous-gaussiens à des distributions plus générales. Nous considérons en particulier les distributions multinationales et les distributions appartenant à la famille exponentielle. Pour ces dernières, nous prouvons l'optimalité (au sens minimax) à un facteur logarithmique près des estimateurs à pénalité norme trace. Un second ensemble de résultats concernent l'algorithme du gradient conditionnel qui est notamment utilisé pour calculer les estimateurs précédents. Nous considérons en particulier deux algorithmes de type gradient conditionnel dans le cadre de l'optimisation stochastique. Nous donnons les conditions sous lesquelles ces algorithmes atteignent les performance des algorithmes de type gradient projeté.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr