Optimisation des réseaux de transport et de communication à l'aide de données massives.

Auteurs
  • CHEN Longbiao
  • NGUYEN Thi mai trang
  • PAN Gang
  • JAKUBOWICZ Jeremie
  • PUJOLLE Guy
  • MORAES Igor monteiro
  • LI Shijian
  • MUNARETTO Anelise
  • FIORE Marco
Date de publication
2018
Type de publication
Thèse
Résumé L'évolution des structures métropolitaines ont créé divers types de réseaux urbains. Parmi lesquels deux types de réseaux sont d'une grande importance pour notre vie quotidienne : les réseaux de transport correspondant à la mobilité humaine dans l'espace physique et les réseaux de communications soutenant les interactions humaines dans l'espace numérique. L'expansion rapide dans la portée et l'échelle de ces deux réseaux soulève des questions de recherche fondamentales sur la manière d’optimiser ces réseaux. Certains des objectifs principaux comprennent le provisioning de ressources à la demande, la détection des anomalies, l'efficacité énergétique et la qualité de service. Malgré les différences dans la conception et les technologies de mise en œuvre, les réseaux de transport et les réseaux de communications partagent des structures fondamentales communes, et présentent des caractéristiques spatio-temporelles dynamiques similaires. En conséquence, ils existent les défis communs dans l’optimisation de ces deux réseaux : le profil du trafic, la prédiction de la mobilité, l’agrégation de trafic, le clustering des nœuds et l'allocation de ressources. Pour atteindre les objectifs d'optimisation et relever les défis de la recherche, différents modèles analytiques, algorithmes d'optimisation et systèmes de simulation ont été proposés et largement étudiés à travers plusieurs disciplines. Ces modèles analytiques sont souvent validés par la simulation et pourraient conduire à des résultats sous-optimaux dans le déploiement. Avec l'émergence de l’Internet, un volume massif de données de réseau urbain peuvent être collecté. Les progrès récents dans les techniques d'analyse de données Big Data ont fourni aux chercheurs de grands potentiels pour comprendre ces données. Motivé par cette tendance, l’objectif de cette thèse est d'explorer un nouveau paradigme d'optimisation des réseaux basé sur les données. Nous abordons les défis scientifiques mentionnés ci-dessus en appliquant des méthodes d'analyse de données pour l'optimisation des réseaux. Nous proposons deux algorithmes data-driven pour le clustering de trafic réseau et la prédiction de la mobilité d’utilisateur, et appliquer ces algorithmes à l'optimisation dans les réseaux de transport et de communications. Premièrement, en analysant les jeux de données de trafic à grande échelle des deux réseaux, nous proposons un algorithme de clustering à base de graphe pour mieux comprendre les similitudes de la circulation et les variations de trafic entre différents zones et heures. Sur cette base, nous appliquons l'algorithme d’agrégation (clustering) de trafic aux deux applications d'optimisation de réseau suivants : 1. Un clustering de trafic dynamique pour la planification à la demande des réseaux de vélos partagés. Dans cette application, nous regroupons dynamiquement les stations de vélos avec des motifs de trafic similaires pour obtenir des demandes de trafic groupées (en cluster) plus stables et plus prédictible, de manière à pouvoir prévoir les stations surchargés dans le réseau et à permettre une planification dynamique de réseau en fonction de la demande. Les résultats d'évaluation en utilisant les données réelles de New York City et Washington, D.C. montrent que notre solution prévoit précisément des clusters surchargés [.].
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr