Contributions à l'étude théorique de l'inférence variationnelle et de la robustesse.

Auteurs
Date de publication
2020
Type de publication
Thèse
Résumé Cette thèse de doctorat traite de l'inférence variationnelle et de la robustesse en statistique et en machine learning. Plus précisément, elle se concentre sur les propriétés statistiques des approximations variationnelles et sur la conception d'algorithmes efficaces pour les calculer de manière séquentielle, et étudie les estimateurs basés sur le Maximum Mean Discrepancy comme règles d'apprentissage qui sont robustes à la mauvaise spécification du modèle.Ces dernières années, l'inférence variationnelle a été largement étudiée du point de vue computationnel, cependant, la littérature n'a accordé que peu d'attention à ses propriétés théoriques jusqu'à très récemment. Dans cette thèse, nous étudions la consistence des approximations variationnelles dans divers modèles statistiques et les conditions qui assurent leur consistence. En particulier, nous abordons le cas des modèles de mélange et des réseaux de neurones profonds. Nous justifions également d'un point de vue théorique l'utilisation de la stratégie de maximisation de l'ELBO, un critère numérique qui est largement utilisé dans la communauté VB pour la sélection de modèle et dont l'efficacité a déjà été confirmée en pratique. En outre, l'inférence Bayésienne offre un cadre d'apprentissage en ligne attrayant pour analyser des données séquentielles, et offre des garanties de généralisation qui restent valables même en cas de mauvaise spécification des modèles et en présence d'adversaires. Malheureusement, l'inférence Bayésienne exacte est rarement tractable en pratique et des méthodes d'approximation sont généralement employées, mais ces méthodes préservent-elles les propriétés de généralisation de l'inférence Bayésienne ? Dans cette thèse, nous montrons que c'est effectivement le cas pour certains algorithmes d'inférence variationnelle (VI). Nous proposons de nouveaux algorithmes tempérés en ligne et nous en déduisons des bornes de généralisation. Notre résultat théorique repose sur la convexité de l'objectif variationnel, mais nous soutenons que notre résultat devrait être plus général et présentons des preuves empiriques à l'appui. Notre travail donne des justifications théoriques en faveur des algorithmes en ligne qui s'appuient sur des méthodes Bayésiennes approchées.Une autre question d'intérêt majeur en statistique qui est abordée dans cette thèse est la conception d'une procédure d'estimation universelle. Cette question est d'un intérêt majeur, notamment parce qu'elle conduit à des estimateurs robustes, un thème d'actualité en statistique et en machine learning. Nous abordons le problème de l'estimation universelle en utilisant un estimateur de minimisation de distance basé sur la Maximum Mean Discrepancy. Nous montrons que l'estimateur est robuste à la fois à la dépendance et à la présence de valeurs aberrantes dans le jeu de données. Nous mettons également en évidence les liens qui peuvent exister avec les estimateurs de minimisation de distance utilisant la distance L2. Enfin, nous présentons une étude théorique de l'algorithme de descente de gradient stochastique utilisé pour calculer l'estimateur, et nous étayons nos conclusions par des simulations numériques. Nous proposons également une version Bayésienne de notre estimateur, que nous étudions à la fois d'un point de vue théorique et d'un point de vue computationnel.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr