

(Deep) Machine Learning Algorithms Bias & Explainability Challenges for Regulation

J.-M. Loubes, Professor &

L. Risser, Al Research Engineer Chair: C. Benesse, L de Lara, A. Gonzalez, B Laurent, M. Serrurier UPS, CNRS & Chair @ Artificial & Natural Intelligence Institute of Toulouse (ANITI)

Mathematical Guarantees in Machine Learning

Goal

- Learning the relationships between characteristic variables X and a target variable Y.
- Being then be able to forecast new observations.

Learning Sample

I.i.d. observations with unknown distribution $\mathbb{P}: (Y_1, X_1), ..., (Y_n, X_n)$.

Machine Learning Algorithm \hat{f}_n for a given risk $R(f) = \mathcal{E}(y, f(x))$

Train the best model among a class of algorithms \mathcal{F} , based on the observations:

$$\hat{f}_n \in \arg\min_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f(X_i)) \right\}$$

Unknown oracle rule.

$$f^* \in \arg\min_{f \in \mathscr{F}} \mathbb{E}_{\mathbb{P}} \{ \mathscr{C}(Y, f(X)) \}$$

 \rightarrow Mathematical guarantees on $\widehat{Y} = \widehat{f}_n(X)$: Control of generalization error

$$\mathbb{E}_{\mathbb{P}}\{\ell(Y,\hat{f}_n(X))\} - \mathbb{E}_{\mathbb{P}}\{\ell(Y,f^{\star}(X))\} \leq \varepsilon$$

Questions Beyond Al Algorithms

Big Data paradigm

- The Data convey all the information.
- The more the data the more accurate the description of the reality.
 - → From data to information: extraction of the knowledge from empirical observations

Need for Large amount of data of good quality

Principle of Machine Learning

- Learn decision rules fitting the data using a set of labeled examples (learning sample).
- The learned decision rules will be used for all the population.
- The whole population is supposed to follow same distribution as the learning sample.
 - → The Machine Learning algorithm (or **AI**) learn the best rule from the data and then can forecast new observations with a guaranteed precision.

Need for Complex Models

Applications of Machine Learning Algorithms

Development of such algorithms for a **large number of applications in all fields of our lives** even critical ones (health, finance, justice, education, transports, ressources management ...)

Classified High Risk Use Cases by European Community Al Act

Credit Scoring

Personalised Medicine

Autonomous Vehicles

Time series Forecasting

Pattern Detection

Amazon, Facebook, Google, IBM, Microsoft... (2015)

Bruxelles, le 21.4.2021 COM(2021) 206 final

2021/0106 (COD)

Proposition de

RÈGLEMENT DU PARLEMENT EUROPÉEN ET DU CONSEIL

ÉTABLISSANT DES RÈGLES HARMONISÉES CONCERNANT L'INTELLIGENCE ARTIFICIELLE (LÉGISLATION SUR L'INTELLIGENCE ARTIFICIELLE) ET MODIFIANT CERTAINS ACTES LÉGISLATIFS DE L'UNION

{SEC(2021) 167 final} - {SWD(2021) 84 final} - {SWD(2021) 85 final}

Artificial Intelligence Act (April 2021) by European Commission

- Definition of High Risk domains of a applications (health, finance, public services, transports ...)
- Performance matters but not only: notions of equity, transparency and robustness
- Need for **definitions of norms** to measures bias (AFNOR, IEEE, ...)
- Need for explainable & understandable decisions
- Primum non nocere

Works in progress to Certify AI based systems (for cars, airplanes ...)

Part 2: Bias in Machine Learning

Biases, Discrimination and Al's Regulation

General Data Protection Regulation (GDPR) & European Al Act (2021)

- Effective in the E.U. since 05/2018
- According to the GDPR, automatic decisions taken by an algorithm should be:
 - un-biased
 - not discriminant
 - fair
 - with the same performance as regards the persons or the groups of persons

More generally

- E.U. (GDPR, art 22-4 2018): "A decision is declared fair if it is neither based on affiliation to a protected minority group, nor based on the explicit or implicit knowledge of sensitive personal data."
- NYC Bill (Dec. 2017): local decision
- Several Trials (USA-Canada)

Bias leads to unfairness and personal or group discrimination

HELPER PRESIDENT ASSESSIANT. LEADER

Statistical Parity

Equality of Odds

« Bias are everywhere » (weapons of maths destruction)

Data & Machine Learning are subjected to bias

- ML Algorithms amplify preexisting bias
- or maintain a biased status-quo
- Auto-prophetic algorithm shape biased worlds
- Accuracy is not enough

World created by Algorithm

Mathematical Models for Fairness

An A.I. algorithm suffers from **unfairness** if its outcomes Y (decisions) are fully or partly based on a **sensitive variable** A that *should* not play a decisive role in the decision making process.

Statistical Parity : $\hat{Y} \perp \!\!\! \perp A$

Equality of Performance : $\hat{Y} \perp \!\!\! \perp A \mid Y$

Being **globally fair** is a probabilistic notion of dependency or conditional dependency

Measures of fairness are numerous and correspond to measuring joint effects which are complex in high dimensions since **« Biases are everywhere »**.

1. **Disparate Treatment** for all x,

$$\mathbb{P}(\hat{Y} = 1 \mid X = x, A = 0) - \mathbb{P}(\hat{Y} = 1 \mid X = x, A = 1)$$

2. Avoiding Disparate Treatment:

$$\mathbb{P}(\hat{Y} \neq Y \mid A = 0) - \mathbb{P}(\hat{Y} \neq Y \mid A = 1).$$

- 3. Predictive Parity $\mathbb{P}(Y = 1 \mid \hat{Y} = 1, A = 0) \mathbb{P}(Y = 1 \mid \hat{Y} = 1, A = 1)$
- 4. For Quantitative case $\min \operatorname{Var}_A \mathbb{E}(\hat{Y} \mid A) = \min \operatorname{Var}_A \mathbb{E}(\mathcal{E}(\hat{Y}, Y) \mid A)$

Granting a Loan by minimising Risk « Adult Data set (UCI database) »

Objective: Forecast if a credit can be given (future salary > 50k\$)

Problem: Not balanced w.r.t to variable « A = Sex »

Illustration on the Adult Income dataset — Disparate impact and accuracy

Disparate Impact w.r.t variable *Sex* considered as sensitive variable A

Disparate Impacts

$$Ref = DI(Y, X, A) = \frac{\mathbb{P}(Y = 1 \mid A = 0)}{\mathbb{P}(Y = 1 \mid A = 1)}$$

$$DI(f, X, A) = \frac{\mathbb{P}(f(X) = 1 \mid A = 0)}{\mathbb{P}(f(X) = 1 \mid A = 1)}$$

- Statistical increase of discrimination between A=1 (Men) et A=0 (Women)
- « Gender » variable leads to discrimination

What says the law? High quality data without discriminative variables.

GDPR or Al's Act focus on quality of the dataset Sensitive variables should not be used : A=Sex is removed from the learning sample

Bias is not modified→ comes from **correlations** and not only the A variable

Tutorial

A Survey of Bias in Machine Learning Through the Prism of Statistical Parity

Philippe Besse, Eustasio del Barrio, **Paula Gordaliza** ✓, Jean-Michel Loubes & Laurent Risser

D

Received 01 Apr 2020, Accepted 02 Jul 2021, Accepted author version posted online: 13 Jul 2021, Published online: 25 Aug 2021

L'apprentissage automatique semble renforcer les biais existant dans la société

Choose a definition for fairness (mainly based on conditional independence) & pay a price for fairness

Three main ways of obtaining fairness according to the criterion which is chosen

1. **Pre-processing** the learning sample and removing the effect of the sensitive variable such that the algorithm does not take into account the effect of the variable that creates the biased behaviour.

$$X \mapsto \tilde{X} \mapsto f(\tilde{X})$$

2. Constraining the algorithm by adding a fairness constraint

$$\hat{f} \in \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(X_i)) + \lambda I(f)$$

3. **Post-processing** the outcome of the algorithm to comply the fairness restrictions. $f(X) \mapsto \Phi_{\text{fair}}(f(X))$

$$W_c(\mu_0, \mu_1) = \inf_{\Pi \in \mathcal{P}(\mu_0, \mu_1)} \int c(x, y) d\Pi(x, y)$$

Fairness constraint for Deep Neural Network

Back-propagation of Fairness contraints in Neural Networks:

Fairness Constraint

Optimal Transport distance (Wasserstein distance) to enforce both distributions to be the same

Loubes et al. (ICML 2019)

Bias and Robustness w.r.t change of context

EuroSAT dataset (https://madm.dfki.de/downloads) : 27.000 remote sensing images / 10 classes

Blue shade effect ($\approx 3\%$)

Automatic Classification between Roads and Rivers is hampered by « Blue shade » variable

Examples of Applications in Econometry

	\sim .			e ·
•	(j ender	Hitect	in mic	rofinance

- Finding Instruments in Instrumental Variable Regression without using some variables (protected variables)
- Constraining the IV regression to be independent from a sensitive attribute

Part 3: 3.1 Explainability in Machine Learning

Need for explainability

Emergence of a Right to explanation

- E.U. (RGPD, art 22 2018): « Right not to be subject to a decision solely based on automated processing, including profiling »
- Fr (Loi Informatique et Libertés): « Right to understand the rules of automatic treatments and their main characteristics »
- NYC Bill (Dec. 2017): Local laws related to automatic decision systems
- E.U (Al Act 2021): « Necessity to be able to correctly interpret and understand the high-risk Al system's output » (Art 13) « sufficiently transparent to enable users to interpret the system's output and use it appropriately. »

Exemples of recent works

- Edwards, Veal: Enslaving the Algorithm: From a « Right to an Explanation » to a « Right to Better Decisions » IEEE Security and Privacy 16(3), 2018
- Besse, Castet-Renard, Garivier, Loubes : L'I.A. du quotidien peut-elle être éthique? Statistique et société 6(3), 2018 https://www.youtube.com/watch?v=RwsMv0lLxos
- Castet-Renard, Besse, Loubes, Perussel : Encadrement des risques techniques et juridiques des activités de police prédictive. Rapport CHEMI du Ministère de l'Intérieur, 2019
- Packages Grad-Cam, Lime, GEMS-AI

• ...

1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model → convolutional neural network:

```
class basicCNN(nn.Module):
   def init (self):
        super(basicCNN, self). init_()
        #Convolution/ReLU/MaxPooling layers
        self.conv1 = nn.Conv2d(1, 2, kernel size=2, stride=1, padding=1) #1 to
        self.pool1 = nn.MaxPool2d(kernel size=2, stride=2) #32x32 to 16x16
        self.conv2 = nn.Conv2d(2, 4, kernel size=2, stride=1, padding=1) #2 to
        self.pool2 = nn.MaxPool2d(kernel size=2, stride=2) #16x16 to 8x8
        self.conv3 = nn.Conv2d(4, 8, kernel size=2, stride=1, padding=1) #4 to
        self.pool3 = nn.MaxPool2d(kernel size=2, stride=2) #8x8 to 4x4
        #Dense layers
        self.fc1 = nn.Linear(8 * 4 * 4, 32)
        self.fc2 = nn.Linear(32, 10)
   def forward(self, x):
        x = F.relu(self.conv1(x))
        x = self.pool1(x)
        x = F.relu(self.conv2(x))
        x = self.pool2(x)
        x = F.relu(self.conv3(x))
        x = self.pool3(x)
        x = x.view(-1, 8*4*4) #flatten the data
        x = F.relu(self.fcl(x))
        x = self.fc2(x)
        return(x)
```


Mnist: predicting Digits

Strong interest to certify algorithmic decisions → robust decision making + towards certifiable IA

Suppose that the predictions are generally accurate:

- Which features were used to take the decision?
- If inadequate features were used, the NN is likely to generalise poorly!

Part 3: 3.2 Explainability in Machine Learning

Solutions & Research

Surrogate Models → LIME (Local interpretable model-agnostic explanations)

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro University of Washington Seattle, WA 98105, USA marcotor@cs.uw.ed

Sameer Singh
University of Washington
Seattle, WA 98105, USA
sameer@cs.uw.edu

Carlos Guestrin
University of Washingtor
Seattle, WA 98105, USA
questrin@cs.uw.edu

https://arxiv.org/pdf/1602.04938.pdf

https://homes.cs.washington.edu/~marcotcr/blog/lime/

https://github.com/marcotcr/lime

Training a **local surrogate models** to explain the prediction of X_i with f_{θ}

<u>Drawbacks</u>: NN are highly non linear and local models can be very different

Our neural-network prediction model f_{θ} ...

... can become a linear, and straightforwardly interpretable, model $g_{\theta'}$ for images close to X_i : Chosen model can be linear regression or decision tree (interpretable models)

Sensitivity to the input → Grad-CAM

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

Ramprasaath R. Selvaraju · Michael Cogswell · Abhishek Das · Ramakrishna Vedantam · Devi Parikh · Dhruv Batra

Georgia Institute of Technology, Atlanta, GA, USA Facebook AI Research, Menlo Park, CA, USA https://arxiv.org/pdf/1610.02391.pdf http://gradcam.cloudcv.org/ https://github.com/ramprs/grad-cam/

Instead of back-propagating the derivatives of the risk R, it is possible to back-propagate the derivatives of a specific value in the N.N. outputs

Represents how y^c is sensitive to the N.N. inputs (for the tested image)

3) Three explainability solutions → Grad-CAM

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

Ramprasaath R. Selvaraju · Michael Cogswell · Abhishek Das · Ramakrishna Vedantam · Devi Parikh · Dhruy Batra

Georgia Institute of Technology, Atlanta, GA, USA Facebook AI Research, Menlo Park, CA, USA https://arxiv.org/pdf/1610.02391.pdf http://gradcam.cloudcv.org/ https://github.com/ramprs/grad-cam/

Results	Predicted class	#1 boxer	#2 bull mastiff	#3 tiger cat
	Grad-CAM [1]			
	Guided backpropagation [2]			
	Guided Grad-CAM [1]			

Research: bridges between computer code experiments and Al algorithms

Sensitivity Analysis for Al Algorithms. : used to certify computer code

(Used in nuclear safety for instance)

Quantification of the dependency of an output w.r.t changes of input parameters

Sobol indices or Shapley values methods (Also to quantify the variability of a bias criterion and understand the root of the bias) Fairness seen as Global Sensitivity Analysis work by Benesse et al. https://arxiv.org/abs/2103.04613

Sobol indices when Prediction Myocardial Infarction

3) Three explainability solutions \rightarrow Gems-AI : explanation under stress

Explaining Machine Learning Models using Entropic Variable Projection

François Bachoc¹, Fabrice Gamboa^{1,3}, Max Halford², Jean-Michel Loubea^{1,3} and Laurent Risser^{1,3}

¹Institut de Mathématiques de Toulouse

https://arxiv.org/pdf/1810.07924.pdf https://www.gems-ai.com/

https://github.com/XAI-ANITI/ethik

« What-if machine » for group-explainability : Explaining models under stress

Intuition: Re-weighting the observations $\{X_i, Y_i\}_{i=1,...,n}$ to **stress the distributions of the data** transform a specific property of the test set in average.

Test set
$$\{X_i, Y_i\}_{i=1,...,n}$$

$$\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{(X_i, Y_i)}$$

 $\text{Modify Input Distribution under constraint: } \arg\min_{Q} \left\{ \mathit{KL}(Q \,|\, \mathbb{P}_n), \mathit{s.t} \int \! \Phi(X,Y) dQ = \lambda \right\}$

² Institut de recherche en informatique de Toulouse

³ Artificial and Natural Intelligence Toulouse Institute (3IA ANITI)

Theorem 2.1. Let $t \in \mathbb{R}^k$ and $\Phi : \mathbb{R}^{p+2} \to \mathbb{R}^k$ be measurable. Assume that t can be written as a convex combination of $\Phi(X_1, \hat{Y}_1, Y_1), \ldots, \Phi(X_n, \hat{Y}_n, Y_n)$, with positive weights. Assume also that the empirical covariance matrix $\mathbb{E}_{Q_n}(\Phi\Phi^\top) - \mathbb{E}_{Q_n}(\Phi)\mathbb{E}_{Q_n}(\Phi^\top)$ is invertible.

Let $\mathbb{P}_{\Phi,t}$ be the set of all probability measures P on \mathbb{R}^{p+2} such that $\int_{\mathbb{R}^{p+2}} \Phi(x) dP(x) = t$. For a vector $\xi \in \mathbb{R}^k$, let $Z(\xi) := \frac{1}{n} \sum_{i=1}^n e^{\langle \Phi(X_i, \hat{Y}_i, Y_i), \xi \rangle}$. Define now $\xi(t)$ as the unique minimizer of the strictly convex function $H(\xi) := \log Z(\xi) - \langle \xi, t \rangle$. Then,

$$Q_t := \operatorname{arginf}_{P \in \mathbb{P}_{\Phi, t}} \operatorname{KL}(P, Q_n) \tag{1}$$

exists and is unique. Furthermore, we have

$$Q_t = \frac{1}{n} \sum_{i=1}^{n} \lambda_i^{(t)} \delta_{X_i, \hat{Y}_i, Y_i},$$
 (2)

with, for $i = 1, \ldots, n$,

$$\lambda_i^{(t)} = \exp\left(\langle \xi(t), \Phi(X_i, \hat{Y}_i, Y_i) \rangle - \log Z(\xi(t))\right). \tag{3}$$

Consistent Estimation: $\mathcal{W}_1\left(Q_t,Q_t^\star
ight) = O_p\left(n^{-1/(p+2)}
ight).$

3) Three explainability solutions → Entropic Variable Projection

Explaining Machine Learning Models using Entropic Variable Projection

François Bachoc¹, Fabrice Gamboa^{1,3}, Max Halford², Jean-Michel Loubes^{1,3} and Laurent Risser^{1,3}

¹Institut de Mathématiques de Toulouse

https://arxiv.org/pdf/1810.07924.pdf https://www.gems-ai.com/

https://aithub.com/XAI-ANITI/ethik

Example: Automatic decision to grant a loan.

What-if the average age is 50 instead of 42 in the test set?

Compute optimal weights

	Age (X ¹)		Education.num (X ²)	Marital.status (X ³)	Hours.per.week (X ⁴)		Loan granted — True (Y)	Loan granted — Predicted $(\hat{Y} = f_{\theta}(X))$	
1.05	54		4	Divorced	40		No	No	,
0.83	41		10	Never-married	60		Yes	Ye	3
1.15	51		13	Married-civ	40		Yes	No	,
0.81	39		14	Married-civ	65		Yes	Ye	s
1.15	49		10	Divorced	50		No	Ye	s
•••									

Advantages:

- Small Algorithmic cost in high-dimension
- Evaluate Robustness and Resiliency w.r.t

realistic stress conditions

- Explain effects on decision and risks
- Mathematical guarantees on convergence.

² Institut de recherche en informatique de Toulouse

³ Artificial and Natural Intelligence Toulouse Institute (3IA ANITI)

3) Three explainability solutions → Entropic Variable Projection

Explaining Machine Learning Models using Entropic Variable Projection

François Bachoc¹, Fabrice Gamboa^{1,3}, Max Halford², Jean-Michel Loubes^{1,3} and Laurent Risser^{1,3}

¹Institut de Mathématiques de Toulouse

https://arxiv.org/pdf/1810.07924.pdf https://www.gems-ai.com/ https://github.com/XAI-ANITI/ethik

What-if the average [...] is [...] instead of [original average value] in the test set?

² Institut de recherche en informatique de Toulouse

³ Artificial and Natural Intelligence Toulouse Institute (3IA ANITI)

When Interpretability and Bias collide

S the confounding variable is here the **snow** but It is hidden since not encoded in the data base. Need to **unveil the bias with explainability**

Main Question:

How to **certify** the behaviour of a Neural Network ?

Regulations require a better understanding of Deep Networks :

- 1. Need for **Quantification of Biases** in the dataset but also of its propagation by the algorithm
- 2. **Explainability** & Transparency of Algorithmic Decisions
- 3. Need for proper **definitions and norms**
- 4. Need for sandboxes, and use-cases

Need to work together between designers of algorithms and regulators

Not complete at all Bibliography ...

- S. Chiappa, R. Jiang, T. Stepleton, A. Pacchiano, H. Jiang, and J. Aslanides. A general ap- proach to fairness with optimal transport. In Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020.
- Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big data, 5(2):153–163, 2017.
- Oneto and Chiappa, Fairness in Machine Learning, Recent Trends in Learning From Data. Studies in Computational Intelligence, vol 896. Springer, Cham, 2020.
- R. Jiang, A. Pacchiano, T. Stepleton, H. Jiang, and S. Chiappa. Wasserstein fair classification. In Thirty-Fifth Uncertainty in Artificial Intelligence Conference, 2019.
- M. Donini, L. Oneto, S. Ben-David, J. S. Shawe-Taylor, and M. Pontil. Empirical risk minimization under fairness constraints. In Advances in Neural Information Processing Systems, pages 2791–2801, 2018.
- Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil, Fair Regression Wasserstein barycenter, Neurips 2020.
- C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pages 214–226. ACM, 2012.
- S. A Feldman, M.and Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian. Certifying and removing disparate impact. In Proceedings of the 21th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Data Mining, pages 259–268. ACM, 2015
- E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. Loubes. (2019): Obtaining Fairness with Optimal Transportation. (Proceedings of ICML).
- Kusner M.J., Loftus J., Russell C., and Silva R. Counterfactual fairness. In Advances in Neural Information Processing Systems, pages 4066–4076, 2017
- E. del Barrio, P. Besse, P. Gordaliza, L. Risser and J.-M. Loubes (2020): A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set. (The American Statistician)

Toolbox: https://www.gems-ai.com/