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1: Principles of Machine Learning

Part 1: Principles and Dangers of Machine Learning
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Mathematical Guarantees in Machine Learning

Goal

• Learning the relationships between characteristic variables  and a target variable .

• Being then be able to forecast new observations.


Learning Sample

I.i.d. observations with unknown distribution :  .


Machine Learning Algorithm       for a given risk      

Train the best model among a class of algorithms , based on the observations:


                                


Unknown oracle rule.                    


 Mathematical guarantees on  :  Control of generalization error


  


X Y

ℙ (Y1, X1), …, (Yn, Xn)

̂fn R( f ) = ℓ(y, f(x))
ℱ

̂fn ∈ arg min
f∈ℱ { 1

n

n

∑
i=1

ℓ(Yi, f(Xi))}
f ⋆ ∈ arg min

f∈ℱ
𝔼ℙ{ℓ(Y, f(X ))}

→ ̂Y = ̂fn(X )

𝔼ℙ{ℓ(Y, ̂fn(X ))} − 𝔼ℙ{ℓ(Y, f ⋆(X ))} ≤ ε
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Questions Beyond AI Algorithms

Big Data paradigm

• The Data convey all the information.

• The more the data the more accurate the description of the reality.


 From data to information: extraction of the knowledge from empirical observations 


Principle of Machine Learning

• Learn decision rules fitting the data using a set of labeled examples (learning sample).

• The learned decision rules will be used for all the population.

• The whole population is supposed to follow same distribution as the learning sample.


 The Machine Learning algorithm (or AI) learn the best rule from the data and then 
can forecast new observations with a guaranteed precision.


→

→

Need for Large amount of data of 
good quality


Need for Complex Models




Applications of Machine Learning Algorithms

Development of such algorithms for a large number of applications in all fields of our lives even 
critical ones (health, finance, justice, education, transports, ressources management …)


                Classified High Risk Use Cases by European Community AI Act 

Credit Scoring Personalised Medicine Autonomous Vehicles

…

Pattern

Detection

Time series Forecasting
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Need for Regulations and Law : first principles
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Artificial Intelligence Act (April 2021) by European Commission


• Definition of High Risk domains of a applications (health, finance, 
public services, transports …)


• Performance matters but not only : notions of equity, transparency 
and robustness


• Need for definitions of norms to measures bias (AFNOR, IEEE, …)

• Need for explainable & understandable decisions

• Primum non nocere 


Works in progress to Certify AI based systems (for cars, airplanes …)
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Bias Discrimination

Part 2: Bias in Machine Learning
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General Data Protection Regulation (GDPR) & European AI Act (2021)

• Effective in the E.U. since 05/2018

• According to the GDPR, automatic decisions taken by an algorithm should be:


- un-biased

- not discriminant

- fair

- with the same performance as regards the persons or the groups of persons


- ...


More generally

• E.U. (GDPR, art 22-4  2018): "A decision is declared fair if it is neither based on affiliation to a 

protected minority group, nor based on the explicit or implicit knowledge of sensitive personal 
data."


• NYC Bill (Dec. 2017) : local decision

• Several Trials (USA-Canada) 

• …


Biases , Discrimination and AI’s Regulation
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Bias leads to unfairness and personal or group discrimination

Statistical ParityEquality of Odds
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« Bias are everywhere » (weapons of maths destruction )

Data & Machine Learning  are subjected to bias


‘Ideal’ world World we live in Data World

World created by Algorithm

• ML Algorithms amplify pre-
existing bias


• or maintain a  biased status-quo

• Auto-prophetic algorithm shape 

biased worlds 

• Accuracy is not enough ….
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Mathematical Models for Fairness

An A.I. algorithm suffers from unfairness if its outcomes  (decisions) are fully or 
partly based on a sensitive variable A that should not play a decisive role in the 
decision making process.


Statistical Parity :  

Equality of Performance : 


Being globally fair is a probabilistic notion of dependency or conditional 
dependency


Measures of fairness are numerous and correspond to measuring joint effects 
which are complex in high dimensions since « Biases are everywhere ».


Y

̂Y ⊥⊥ A
̂Y ⊥⊥ A | Y

1. Disparate Treatment for all x,                                                                                                   
 


2. Avoiding Disparate Treatment :  

3. Predictive Parity 
4. For Quantitative case  

ℙ( ̂Y = 1 ∣ X = x, A = 0) − ℙ( ̂Y = 1 ∣ X = x, A = 1)

ℙ( ̂Y ≠ Y ∣ A = 0) − ℙ( ̂Y ≠ Y ∣ A = 1) .
ℙ(Y = 1 ∣ ̂Y = 1,A = 0) − ℙ(Y = 1 ∣ ̂Y = 1,A = 1)

min VarA𝔼( ̂Y ∣ A) min VarA𝔼(ℓ( ̂Y, Y ) ∣ A)
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Granting a Loan by minimising Risk «  Adult Data set (UCI database) »

 observations 
(individuals) described by  
variables

n = 48842
p = 14

Objective: Forecast if a credit can be given ( future salary ) 


Problem: Not balanced w.r.t to variable « A = Sex »


> 50k$
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Illustration on the Adult Income dataset — Disparate impact and accuracy 

Disparate Impact   w.r.t variable  Sex considered as sensitive variable A

• Statistical increase of discrimination between A=1 (Men) et A=0 (Women)

• « Gender » variable leads to discrimination 

Disparate Impacts Accuracies

Ref = DI(Y, X, A) =
ℙ(Y = 1 ∣ A = 0)
ℙ(Y = 1 ∣ A = 1)

DI( f, X, A) =
ℙ( f (X ) = 1 ∣ A = 0)
ℙ( f (X ) = 1 ∣ A = 1) 
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What says the law ? High quality data without discriminative variables.

Disparate Impacts Accuracies

Bias is not modified  comes from correlations and not only the A variable →

GDPR or AI’s Act focus on quality of the dataset

Sensitive variables should not be used : A=Sex is removed from the learning sample 
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L’apprentissage automatique semble 
renforcer les biais existant dans la 
société

1.C
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New Methods to ensure fairness or robustness w.r.t to a contextual variable

Choose a definition for fairness (mainly based on conditional independence) & pay a 
price for fairness


Three main ways of obtaining fairness according to the criterion which is chosen


1. Pre-processing the learning sample and removing the effect of the sensitive variable 
such that the algorithm does not take into account the effect of the variable that 
creates the biased behaviour.


 
2. Constraining the algorithm by adding a fairness constraint


3. Post-processing the outcome of the algorithm to comply the fairness restrictions.              

X ↦ X̃ ↦ f(X̃ )

̂f ∈ arg min
f∈ℱ

1
n

n

∑
i=1

ℓ(Yi, f(Xi)) + λI( f )

f(X ) ↦ Φfair( f(X ))

μ0 ∼ X ∣ A = 0
μ1 ∼ X ∣ A = 1

ν = μA ∘ T−1
A

Wc(μ0, μ1) = inf
Π∈𝒫(μ0,μ1) ∫ c(x, y)dΠ(x, y)
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Fairness constraint for Deep Neural Network

Parameters

Risk

 Fairness Constraint


X1
i

X2
i

Xp
i

⋮

̂Y1
i

̂YK
i

⋮
{Y1

i , Ai}

{YK
i , Ai}

Back-propagation of Fairness contraints in Neural Networks:

Loubes et al.  (ICML 2019)

Optimal Transport distance (Wasserstein 
distance) to enforce both distributions to 
be the same



3IA ANITI

Bias and Robustness w.r.t change of context

EuroSAT dataset (https://madm.dfki.de/downloads) : 27.000 remote sensing images / 10 classes 

Blue shade effect ( )≈ 3 %

Automatic Classification between Roads and Rivers is hampered by « Blue shade » variable

https://madm.dfki.de/downloads
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Examples of Applications in Econometry

• Gender Effect in microfinance


• Finding Instruments in Instrumental Variable Regression without using some 
variables (protected variables)


• Constraining the IV regression to be independent from a sensitive attribute 
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Explaining an Algorithmic Decision

Part 3: 3.1 Explainability in Machine Learning



Explainability techniques in M.L.

 Need for explainability

Emergence of a Right to explanation

• E.U. (RGPD, art 22 — 2018) : « Right not to be subject 

to a decision solely based on automated processing, 
including profiling  »


• Fr (Loi Informatique et Libertés) : « Right to understand 
the rules of automatic treatments and their main 
characteristics »


• NYC Bill (Dec. 2017) : Local laws related to automatic 
decision systems


• E.U (AI Act - 2021) : « Necessity to be able to correctly 
interpret and understand the high-risk AI system’s 
output » (Art 13) « sufficiently transparent to enable 
users to interpret the system’s output and use it 
appropriately. »


Exemples of recent works

• Edwards, Veal : Enslaving the Algorithm : From a « Right to an Explanation » to a « Right to Better Decisions »  IEEE 

Security and Privacy 16(3), 2018

• Besse, Castet-Renard, Garivier, Loubes : L’I.A. du quotidien peut-elle être éthique? Statistique et société 6(3), 2018 —  

https://www.youtube.com/watch?v=RwsMv0ILxos

• Castet-Renard, Besse, Loubes, Perussel : Encadrement des risques techniques et juridiques des activités de police 

prédictive. Rapport CHEMI du Ministère de l’Intérieur, 2019

• Packages Grad-Cam, Lime, GEMS-AI

• …

https://www.youtube.com/watch?v=RwsMv0ILxos


Explainability techniques in M.L.

1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model  convolutional neural network:→

https://github.com/gwding/draw_convnet

Mnist: predicting Digits

https://github.com/gwding/draw_convnet


Explainability techniques in M.L.

 Need for explainability to trust the model 

Strong interest to certify algorithmic decisions  robust decision making + towards certifiable IA→

Example:

No blink

(But possibly 

break lights)

Left blink

Right blink

Warning

Suppose that the predictions are generally accurate:

• Which features were used to take the decision?

• If inadequate features were used, the NN is likely to generalise poorly!

Model 1 Model 2
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Explaining an Algorithmic Decision

Part 3: 3.2 Explainability in Machine Learning


Solutions & Research 



Explainability techniques in M.L.

Surrogate Models  LIME (Local interpretable model-agnostic explanations)→

fθ(Xi) = (0.97,0.02,…,0.07)

Our neural-network prediction model  …fθ

… can become a linear, and straightforwardly interpretable, model  for images close to :

Chosen model can be linear regression or decision tree (interpretable models)

gθ′￼ Xi

Xi

gθ′￼(Xi) = (0.95,0.03,…,0.05)
Xi

Weighted sum of the intensities with weights:

…

(followed by logistic function)

https://arxiv.org/pdf/1602.04938.pdf

https://homes.cs.washington.edu/~marcotcr/blog/lime/

https://github.com/marcotcr/lime

Training a local surrogate models to explain the prediction of  with 
Drawbacks : NN are highly non linear and local models can be very different

Xi fθ

https://arxiv.org/pdf/1602.04938.pdf
https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://github.com/marcotcr/lime


Explainability techniques in M.L.

Sensitivity to the input  Grad-CAM→

Instead of back-propagating the derivatives of the risk , it is possible to back-propagate the derivatives of a 
specific value in the N.N. outputs 

R

Slightly modified back-propagation

[Springenberg et al. 2014]

yc

Represents how  
is sensitive to the 
N.N. inputs (for the 
tested image)

yc

https://arxiv.org/pdf/1610.02391.pdf

http://gradcam.cloudcv.org/

https://github.com/ramprs/grad-cam/

https://arxiv.org/pdf/1610.02391.pdf
http://gradcam.cloudcv.org/
https://github.com/ramprs/grad-cam


Explainability techniques in M.L.

3) Three explainability solutions  Grad-CAM→

https://arxiv.org/pdf/1610.02391.pdf

http://gradcam.cloudcv.org/

https://github.com/ramprs/grad-cam/

Results 

https://arxiv.org/pdf/1610.02391.pdf
http://gradcam.cloudcv.org/
https://github.com/ramprs/grad-cam
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Research : bridges between computer code experiments and AI algorithms

Sensitivity Analysis for AI Algorithms. : used to certify computer code


(Used in nuclear safety for instance )


Quantification of the dependency of an output w.r.t changes of input parameters


Sobol indices or Shapley values methods …. (Also to quantify the variability of a 
bias criterion and understand the root of the bias) Fairness seen as Global Sensitivity 
Analysis work by Benesse et al. https://arxiv.org/abs/2103.04613

Sobol indices when

Prediction Myocardial

Infarction



Explainability techniques in M.L.

3) Three explainability solutions  Gems-AI : explanation under stress→

https://arxiv.org/pdf/1810.07924.pdf

https://www.gems-ai.com/

https://github.com/XAI-ANITI/ethik

« What-if machine » for group-explainability : Explaining models under stress

 ℙn =
1
n

n

∑
i=1

δ(Xi,Yi)

« Black-box » decision rules 
{Xi, Yi}i=1,…,n

Test set

X1
i

X2
i

X3
i

…
Xp

i

Ŷi := f (Xi)
…

Intuition : Re-weighting the observations  to stress the distributions of the data transform a 
specific property of the test set in average. 

{Xi, Yi}i=1,…,n

Modify Input Distribution under constraint: arg min
Q {KL(Q |ℙn), s . t∫ Φ(X, Y )dQ = λ}

https://arxiv.org/pdf/1810.07924.pdf
https://www.gems-ai.com/
https://github.com/XAI-ANITI/ethik


CNRS / Institut de Mathématiques de Toulouse


»Con

Consistent Estimation:



Explainability techniques in M.L.

3) Three explainability solutions  Entropic Variable Projection→

https://arxiv.org/pdf/1810.07924.pdf

https://www.gems-ai.com/

https://github.com/XAI-ANITI/ethik

Age

P 
( l

oa
n 

gr
an

te
d 

) 

Example : Automatic decision to grant a loan .

What-if the average age is 50 instead of 42 in the test set?

1.05
0.83

1.15

0.81

1.15

…

Compute optimal weights

Explain how the outputs vary

Advantages : 

• Small Algorithmic cost in high-dimension

•  Evaluate Robustness and Resiliency w.r.t

realistic stress conditions

• Explain effects on decision and risks

• Mathematical guarantees on convergence.


https://arxiv.org/pdf/1810.07924.pdf
https://www.gems-ai.com/
https://github.com/XAI-ANITI/ethik


Explainability techniques in M.L.

3) Three explainability solutions  Entropic Variable Projection→

https://arxiv.org/pdf/1810.07924.pdf

https://www.gems-ai.com/

https://github.com/XAI-ANITI/ethik

What-if the average […] is […] instead of [original average value] in the test set?

https://arxiv.org/pdf/1810.07924.pdf
https://www.gems-ai.com/
https://github.com/XAI-ANITI/ethik
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When Interpretability and Bias collide 

 the confounding variable is here the snow but

It is hidden since not encoded in the data base.

Need to unveil the bias with explainability 

S
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Conclusion

Main Question :


How to certify the behaviour of a  Neural Network  ?


Regulations require a better understanding of Deep Networks :


1. Need for Quantification of Biases in the dataset but also of its propagation by the 
algorithm


2. Explainability & Transparency of Algorithmic Decisions

3. Need for proper definitions and norms 

4. Need for sandboxes , and use-cases 

Need to work together between designers of algorithms and regulators 
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