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Question and Motivation

Does Bitcoin mining contribute to climate change?

Bitcoin blockchain validation process requires specialized hardware and vast
amounts of electricity, translating into a significant carbon footprint.
e.g. the 2017 carbon footprint of Bitcoin reached 69 million metric tons of
CO2-equivalent (MtCO2e), forecasting a violation of the Paris COP21
UNFCCC Agreement by 2040 due to Bitcoin’s cumulative emissions alone
(Mora et al., 2017);
But controversial: subsequent estimates heavily revise downwards Mora et al.’s
(2017) projections...
Why? Because miners are globally geo-located, facing very different energy
costs, and employ hardware with unknown energy intensities =⇒ Diffi culty in
measuring the Bitcoin mining network power consumption;
And, the recent five-fold increase in Bitcoin prices (€35,561.49 as of
14/03/2022) has heightened public concern, despite of China’s recent ban on
Bitcoin mining, Elon Musk’s rejection of Bitcoin as payments for Tesla cars,
etc.
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What do We Do

We deploy statistical/machine learning (ML) methods (feedforward deep
neural networks, DNNs) to measure the carbon footprint of Bitcoin mining
(’target/output’) and the associated uncertainty (prediction intervals, PIs),
which:

Are absent from the ongoing debate, frames it, and are crucial to inform
policies;
Nest existing techno-economic approaches, and are superior to statistical
methods, because
Bitcoin miners geo-location, actual sources of energy and hardware intensities
used are unobserved =⇒ model misspecification mistakes compromise reliable
statistical/causal inference;
ML automates model selection and estimation, replacing exact functional form
specification and covariate selection by ’high quality approximation’(’universal
approximation theorems’) of the unknown input-output relationship =⇒
reliable statistical inference;
Inputs (P = 42): (i) predictors of the Bitcoin price level (e.g. monetary
economics); (ii) factors driving investors’interest in/attention to the
cryptocurrency; (iii) exchange rates with other currencies; or (iv) supply-side
factors for the costs incurred by Bitcoin and ASIC mining chips producers,
related to rational for-profit mining decisions.
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What do We Find I

1 Substantial uncertainty reduction around the estimated CO2 emissions,
relative to the economic upper and lower bounds (Figure 1, upper panel)
when compared to the associated 95% PIs (Figure 1, lower panel):

Calvo-Pardo et. al. (Economics, U. of Southampton)Machine Learning the Carbon Footprint of Bitcoin Mining 22 Mar 2022 CCI-RIdF-Paris 5 / 13



Figure: Economic upper and lower bounds for daily CO2 emissions (in black), and the
ReLu DNN-based daily emissions point estimates, COBU2 , in blue. Below, the 95% PIs
(in black), different left-hand scale.
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What do We Find II

2. Substantially lower estimated CO2 annual emissions, from our novel
bottom-up approach:

COr2
[ktCO2 per day, per TH/s]

= E r · I + COrw2 = PUE · er ·H · I × 10−9 + COrw2

COer2
[ktCO2 per day, per TH/s]

= E r · I e + COrw2 = 1.05 · er ·H · I e × 10−9 + COrw2

COBU2
[ktCO2 per day, per TH/s]

= 1.05 ·∑Mm=1 erm ·∑Cc=1 sASICcm · I ec ·Hc × 10−9 + COrw2

Optimal ReLu DNN Target/Year 2017 2018 2019
COBU2 (MtCO2e)

[95% PI]
2.77

[1.98,3.56]
16.08

[14.19,17.97]
14.99

[13.25,16.73]

COre2 (MtCO2e)
[95% PI]

2.98
[0.42,6.70]

18.11
[16.34,19.88]

17.45
[15.76,19.14]

COr2 (MtCO2e)
[95% PI]

3.72
[2.90,4.54]

23.98
[22.46,25.51]

20.06
[18.53,21.59]
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Figure: ’Brown’(energy intensity I , COr2 in black) and ’green/clean’(energy intensity I
e ,

COre2 in green), ’green’bottom-up approach (COBU2 in red). ReLu DNN point estimates
of COBU2 in blue:

Figure: Optimal Neural Network Training
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What do We Find III

3. Yet, raising alarming inmediate concerns about Bitcoin mining GHG annual
emission levels, forecasted to increase to 29.05 by the end of 2021, to 50.46
by 2022, and to 83.41 by 2023, to reach an alarming 132.01 by the end of
2024, all in MtCO2-e, similar to the combined annualized 2019 GHG of
Belgium (100 MtCO2e) and Denmark (32 MtCO2e):
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Figure: Top panel: observed (black) and simulated (red) Bitcoin network hashrate
Ĥt = (3.52× 104 · t) · exp{8.31× 104 · t}. Bottom panel: Projected CO2 emissions for
COBU2 (blue), COr2 (black), and CO

re
2 (green); observed CO2 (red).

Figure: Optimal Neural Network Training
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Conclusion

We deploy supervised ML methods (Optimal ReLu DNN) to better, more
reliably and timely assess concerns with the carbon footprint of Bitcoin
mining, that:

1 Improve upon existing (techno-economic and statistical) approaches, based on
an economic model of rational Bitcoin mining;

2 Encompass available estimates, framing the debate, and yet
3 Raise immediate concerns, calling for urgent policy action while offering a
novel methodology to track and evaluate alternative policies;

Next: Policy evaluation calls for causal/counter-factual analysis with ML
tools, e.g. Athey and Wager (2021, Econometrica) for Random Forests, or
Farrell et al. (2021, Econometrica) for DNNs.

Open access publication: J. Risk Financial Manag. 2022, 15(2), 71.
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Methods I

Why ML methods, and within those, DNNs?

Method Target Output MAE MSE RMSE
Optimal ReLu DNN COr2 8.29 123.97 11.13
Optimal ReLu DNN COre2 6.17 58.76 7.67
Optimal ReLu DNN COBU2 4.50 33.59 5.80

Optimal ReLu DNN, no inputs COBU2 18.37 363.56 19.07
Cross-validated ReLu DNN COBU2 5.35 48.48 6.96

Random Forest COBU2 7.17 82.62 9.09

Pairwise model comparison test statistic of the difference in out-of-sample
MSE of our optimal ReLu DNN against:

(rf) random forest: 3.77 (p-value < 0.0001), and
(cv) equally-sized cross-validated ReLu DNN: 1.93 (p-value of 0.0269)
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Methods II

What are Optimal ReLu DNNs?

In Calvo-Pardo, H. F., Mancini, T. and Olmo, J. (2020) ”Optimal Deep
Neural Networks by Maximization of the Approximation Power”, SSRN, we
show that recent advances in combinatorial optimization software (RStudio)
can be exploited to optimally allocate hidden units ({Zl}Ll=1) within (’width’)
and across layers in deep architectures of a given size Z = ∑Ll=1 Zl . Adopting
the lower bound on the maximal number of linear regions that ReLu DNNs
can approximate as maximization criterion (Montufar, Pascanu, Cho and

Bengio, 2014), LB(L, {Zl}L−1l=1 ;P) ≡
(

∏L−1
l=1

⌊
Zl
P

⌋P)
∑Pr=0 (

Z−∑L−1l=1 Zl
r ), the

optimal depth L̂ and width {Ẑl}L̂l=1 of a DNN obtains from:

(OPT) (L̂, {Ẑl}L̂l=1) ∈ arg max
(L,{Zl }L−1l=1 )

LB(L, {Zl}L−1l=1 ;P)

Since (OPT) finds the optimal depth and width (layer-wise) given the network
architecture size, Z = ∑Ll=1 Zl , bigger and more complex datasets {yi ,Xi}

N
i=1

naturally summon architectures with more hidden units, Z .

Calvo-Pardo et. al. (Economics, U. of Southampton)Machine Learning the Carbon Footprint of Bitcoin Mining 22 Mar 2022 CCI-RIdF-Paris 13 / 13


