Dissecting Climate Risks: Are they Reflected in Stock Prices?

Renato Faccini¹, Rastin Matin¹, George Skiadopoulos^{2,3}

¹Danmarks Nationalbank

²School of Economics and Finance, Queen Mary University of London

³Department of Banking and Financial Management, University of Piraeus

Financial Risks International Forum, Institut Louis Bachelier 22 March, 2022

Motivation

• Market-wide risks from climate change are multifaceted: Physical & Transition risks

< A

∃ ► < ∃ ►</p>

æ

 Market-wide risks from climate change are multifaceted: Physical & Transition risks

• Do stock prices reflect these risks? The answer is not obvious

- (-) Survey studies (Krüger et al., 2020)
- (-) Decarbonizing portfolios $\Rightarrow \uparrow$ transaction costs (Bessembinder, 2017)
- (?) Does decarbonisation pay off? (Pedersen et al. 2020)
- (+) Investors may be sensitive to short-term effects

 Market-wide risks from climate change are multifaceted: Physical & Transition risks

• Do stock prices reflect these risks? The answer is not obvious

- (-) Survey studies (Krüger et al., 2020)
- (-) Decarbonizing portfolios $\Rightarrow \uparrow$ transaction costs (Bessembinder, 2017)
- (?) Does decarbonisation pay off? (Pedersen et al. 2020)
- (+) Investors may be sensitive to short-term effects

• Is it physical or transition risks which are priced?

- Camp #1: Physical risks are not priced ⇒ Need for government's intervention
- **Camp#2:** Physical risks *are not* priced & Government's intervention *is* priced, yet no need for intervention.

- 本間 と 本語 と 本語 と

First time evidence on what types of market-wide climate risks are reflected in U.S. stock prices

- First time evidence on what types of market-wide climate risks are reflected in U.S. stock prices
- We dissect market-wide climate risks by textual analysis
 - Novel measures of market-wide physical & transition climate risks

- First time evidence on what types of market-wide climate risks are reflected in U.S. stock prices
- We dissect market-wide climate risks by textual analysis
 - Novel measures of market-wide physical & transition climate risks
- **OPERATE:** Provide and validate a possible explanation for the results

- First time evidence on what types of market-wide climate risks are reflected in U.S. stock prices
- We dissect market-wide climate risks by textual analysis
 - Novel measures of market-wide physical & transition climate risks
- **Provide and validate** a possible explanation for the results
- **Occument** which firms are the most exposed to these risks.

• Reuters news: 1st Jan. 2000 - 31st Dec.2018

- More than 13 million articles from Refinitiv News Archive
- Screening & looking for "climate change" or "global warming" \rightarrow $\approx 34,000$ articles

-∢ ∃ ▶

• Reuters news: 1st Jan. 2000 - 31st Dec.2018

- More than 13 million articles from Refinitiv News Archive
- Screening & looking for "climate change" or "global warming" \rightarrow $\approx 34,000$ articles
- U.S. common stocks returns & characteristics (daily data, CRSP, Compustat)
- Equity risk factors from authors' websites
- 'E' score from Refinitiv.

Latent Dirichlet Allocation (Blei et al. 2003)

- **O** Decomposes the entire textual corpus into K topics (k = 1, ..., K)
 - **Topic** k: A probability distribution over unique words
- Estimates topic shares: Percentage of a given article associated with the respective topic
 - Article: A probability distribution over topics
 - Intensity by which a topic appears in that article
 - k-risk factor value at time t: Intensity of news coverage of a given topic on that day
 - We identify four topics: Natural disasters, Global warming, International summits, U.S. climate policy.

Labeling Topics: Natural disasters

- * B > * B

Labeling Topics: U.S. climate policy I

Labeling Topics: U.S. climate policy II

A E A

Natural disasters factor

- Increases in the factor \rightarrow Bad news for the economy
- Risks which will materialize in the long-term.

(日) (同) (三) (三)

Global warming factor

- Increases in the factor \rightarrow Bad news for the economy
- Risks which will materialize in the long-term.

International summits factor

- Increases in the factor \rightarrow Bad news for the economy
- Risks which will materialize in the long-term.

U.S. climate policy factor

- Increases \rightarrow ?
 - Bad or good news for the economy depending on which Party conquers the Congress
- Risks will materialize in the short-term.

$$r_{it} - r_{ft} = c_i + \beta_i F_t + \gamma'_i X_t + \varepsilon_{it}$$
(1)

• For each stock *i*, at each time *t*, we estimate the climate beta with respect to each textual factor *F*_t separately

$$r_{it} - r_{ft} = c_i + \beta_i F_t + \gamma'_i X_t + \varepsilon_{it}$$
(1)

() We sort stocks in (decile/quintile) portfolios based on β_i

$$r_{it} - r_{ft} = c_i + \beta_i F_t + \gamma'_i X_t + \varepsilon_{it}$$
(1)

- We sort stocks in (decile/quintile) portfolios based on β_i
- Q Calculate monthly post-ranking portfolio returns (value-weighted)

$$r_{it} - r_{ft} = c_i + \beta_i F_t + \gamma'_i X_t + \varepsilon_{it}$$
(1)

- We sort stocks in (decile/quintile) portfolios based on β_i
- ② Calculate monthly post-ranking portfolio returns (value-weighted)
- Ompute spread portfolio returns

$$r_{it} - r_{ft} = c_i + \beta_i F_t + \gamma'_i X_t + \varepsilon_{it}$$
(1)

- We sort stocks in (decile/quintile) portfolios based on β_i
- ② Calculate monthly post-ranking portfolio returns (value-weighted)
- Ompute spread portfolio returns
- Rolling window estimation: Repeat Steps (1 3) until we exhaust the sample

$$r_{it} - r_{ft} = c_i + \beta_i F_t + \gamma'_i X_t + \varepsilon_{it}$$
(1)

- We sort stocks in (decile/quintile) portfolios based on β_i
- ② Calculate monthly post-ranking portfolio returns (value-weighted)
- Ompute spread portfolio returns
- Rolling window estimation: Repeat Steps (1 3) until we exhaust the sample
- Stimate alpha of spread portfolio
 - Alternative models for estimating climate beta & alpha.

Are factors priced? Jan 2000 - Dec 2018 (Deciles)

Alphas (Decile portfolios), 1st January 2000- 31st December 2018

Natural Disasters	Global Warming	Int. Summits	U.S. Climate		
Panel A: Market model					
0.14	-0.0	0.12	0.96***		
(0.3)	(-0.2)	(0.42)	(2.91)		
	Panel B: FF	3F model			
0.07	0.20	0.53*	0.65**		
(0.24)	(0.67)	(1.73)	(2.34)		
-0.07	0.03	-0.49	0.46*		
(-0.24)	(0.10)	(1.65)	(1.66)		
	Panel D: FF	5F model			
0.03	0.05	-0.66**	0.2***		
(0.0)	(0.19)	(-2.5)	(2.75)		
	Panel E: FF 5F +	momentum			
0.27	-0.09	-0.76***	0.61**		
(0. 9)	(-0.34)	(-2.63)	(2.25)		

• Possible explanation: Intertemporal hedging

3 🕨 🖌 3

- Possible explanation: Intertemporal hedging
- **Conjecture**: \downarrow U.S. climate policy signals \uparrow transition risks
 - $\bullet \ \rightarrow \ "bad"$ news for the economy
 - $\bullet \ \rightarrow$ deteriorates the investor's opportunity set
- Investors would buy (short sell) stocks with negative (positive) textual climate betas

- Possible explanation: Intertemporal hedging
- **Conjecture**: \downarrow U.S. climate policy signals \uparrow transition risks
 - $\bullet \ \rightarrow \ "bad"$ news for the economy
 - $\bullet \ \rightarrow$ deteriorates the investor's opportunity set
- Investors would buy (short sell) stocks with negative (positive) textual climate betas
- Strategies to check proposed explanation: Check the risk-premium's sign by ensuring that the conjecture holds

- Possible explanation: Intertemporal hedging
- **Conjecture**: \downarrow U.S. climate policy signals \uparrow transition risks
 - $\bullet \ \rightarrow \ "bad"$ news for the economy
 - $\bullet \ \rightarrow$ deteriorates the investor's opportunity set
- Investors would buy (short sell) stocks with negative (positive) textual climate betas
- Strategies to check proposed explanation: Check the risk-premium's sign by ensuring that the conjecture holds
 - **(**) *Choose* an appropriate sample period (Sub-sample analysis)
 - Re-construct the policy factor by marking the content of news (narrative analysis, Romer & Romer, 2010)
 - \Rightarrow Know what the factor fluctuations signal.

Subsample analysis

- Post Nov 2012:
 - Lack of a majority for Democrats in the U.S. House of Representatives
 - After 2014, the Democrats also lost control of the Senate
 - Trump took over in Nov. 2016

Decile sorts on U.S. Climate		e Quintile sorts on U.S. Climate			
Pre-2012	Post-2012	Pre-2012	Post-2012		
Panel A: Market model					
1.05	0.4**	0.55	0.75***		
(2.33)	(2.12)	(1.55)	(2.9)		
		Panel B: FF 3F model			
0.35	0.9***	0.06	0.70***		
(0.91)	(3.06)	(0.17)	(3.11)		
		Panel C: FFC model			
0.17	0.97***	-0.11	0.46**		
(0.46)	(3.29)	(-0.43)	(2.52)		
		Panel D: FF 5F model			
0.4	1.23***	0.45*	0.59**		
(1.23)	(3.2)	(1.73)	(2.15)		
		Panel E: FF 5F + mom.			
0.44	0.79***	0.21	0.42**		
(1.26)	(2.72)	(1.12)	(2.13)		
(1.20)	(2.72)	(1.12)	(2.13)		

Faccini, Matin & Skiadopoulos

	1 (L)	2	3	4	5 (H)
	P	anel A: Fama-Fre	ench-Carhart mode	el	•
Average return	0.80*	1.03***	0.87***	0.89**	1.07***
	(1.84)	(2.88)	(2.84)	(2.60)	(2.66)
Climate beta	-0.48	-0.16	0.00	0.15	0.47
E score	<mark>35.12</mark>	40.37	41.66	40.29	<mark>34.86</mark>
E score (change)	<mark>7.12</mark>	6.26	5.70	6.22	<mark>6.05</mark>
log(size)	6.36	6.91	7.02	6.91	6.43
N	747.00	751.00	751.00	750.00	747.00
	Pa	nel B: Fama-Frer	nch five-factor mod	lel	•
Average return	0.71	1.01***	0.86***	0.95***	1.10***
	(1.40)	(2.76)	(2.79)	(3.09)	(2.93)
Climate beta	-0.48	-0.16	0.00	0.16	0.48
E score	<mark>35.15</mark>	40.51	41.37	40.37	<mark>35.15</mark>
E score (change)	<mark>6.64</mark>	6.22	5.64	6.38	<mark>6.18</mark>
log(size)	6.38	6.92	7.01	6.91	6.43
N	747.00	748.00	752.00	752.00	747.00

æ

<ロト < 団ト < 団ト < 団ト

U.S. climate policy: Construction of a narrative factor

• Select articles with a topic share on the domestic policy factor >40% \rightarrow 3, 500 articles

U.S. climate policy: Construction of a narrative factor

- Select articles with a topic share on the domestic policy factor >40% \rightarrow 3, 500 articles
- Read each article and mark it with
 - \bullet +1, if it signals an increase in transition risks,
 - -1, if it signals a decrease in transition risks,
 - 0, if its content is mixed

- Select articles with a topic share on the domestic policy factor >40% \rightarrow 3, 500 articles
- Read each article and mark it with
 - \bullet +1, if it signals an increase in transition risks,
 - -1, if it signals a decrease in transition risks,
 - 0, if its content is mixed
- Narrative factor value at time t: Sum of the marks given to the articles over day t.

U.S. climate policy narrative factor

Sign of the risk premium under hedging hypothesis

- By construction, decreases in the factor signal good news for the economy
- ⇒ Risk premium of the U.S. climate policy narrative factor: It should be negative under the hedging argument.

Asset pricing tests: Narrative factor (Decile)

2000-2018	2000-2012	2012-2018				
Panel A: Market model						
-0.64*	-0.52	-1.01**				
(-1.86)	(-1.13)	(-2.43)				
Panel B: FF 3F model						
-1.03***	0.77**	-1.39***				
(-3.56)	(-2.37)	(-4.30)				
Panel C: FFC model						
-0.85***	-0.59*	-1.37***				
(-2.76)	(-1.66)	(-3.61)				
Panel D: FF 5F model						
-0.65**	-0.62	-0.84***				
(-1.97)	(-1.43)	(-2.97)				
Panel E: FF 5F + momentum						
-0.31	0.00	-0.93***				
(-1.07)	(0.00)	(-3.40)				

æ

- 4 回 ト - 4 回 ト

- We dissect market-wide climate risk in its multiple sources
- Examine whether these are priced in U.S. stocks
- **O** Provide & validate an explanation: Intertemporal hedging

- We dissect market-wide climate risk in its multiple sources
- ② Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging
 - Results:
 - We identify four market-wide textual factors with a clear interpretation
 - Only U.S. climate policy is priced
 - This evidence is driven by the post-2012 era

- We dissect market-wide climate risk in its multiple sources
- ② Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging
 - Results:
 - We identify four market-wide textual factors with a clear interpretation
 - Only U.S. climate policy is priced
 - This evidence is driven by the post-2012 era

Implications:

It is the government's intervention and not physical risks

- We dissect market-wide climate risk in its multiple sources
- ② Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging
 - Results:
 - We identify four market-wide textual factors with a clear interpretation
 - Only U.S. climate policy is priced
 - This evidence is driven by the post-2012 era

Implications:

- It is the government's intervention and not physical risks
- ② Climate policy risks have started to be priced only recently

- We dissect market-wide climate risk in its multiple sources
- ② Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging
 - Results:
 - We identify four market-wide textual factors with a clear interpretation
 - Only U.S. climate policy is priced
 - This evidence is driven by the post-2012 era

Implications:

- It is the government's intervention and not physical risks
- ② Climate policy risks have started to be priced only recently
- Investors reward firms which improve their environmental profile

- We dissect market-wide climate risk in its multiple sources
- ② Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging
 - Results:
 - We identify four market-wide textual factors with a clear interpretation
 - Only U.S. climate policy is priced
 - This evidence is driven by the post-2012 era

Implications:

- It is the government's intervention and not physical risks
- ② Climate policy risks have started to be priced only recently
- Investors reward firms which improve their environmental profile
- esults are consistent with both camps

- We dissect market-wide climate risk in its multiple sources
- ② Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging
 - Results:
 - We identify four market-wide textual factors with a clear interpretation
 - Only U.S. climate policy is priced
 - This evidence is driven by the post-2012 era

Implications:

- It is the government's intervention and not physical risks
- Olimate policy risks have started to be priced only recently
- Investors reward firms which improve their environmental profile
- Results are consistent with both camps
- Future research: Why are not all risks priced? Investors' short-termism and/or lack of information, or not systemic.

Faccini, Matin & Skiadopoulos

Thank you for your attention and time !

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3795964

gskiado@unipi.gr, g.skiadopoulos@qmul.ac.uk

Faccini, Matin & Skiadopoulos

2

イロト イヨト イヨト イヨト

Related literature

- Olimate Finance empirical literature (Giglio et al., 2021a)
 - Real estate: Bernstein et al. (2019), Baldauf et al. (2020), Giglio et al. (2021b)
 - Bonds: Painter (2020), Seltzer et al. (2020), Goldsmith-Pinkham et al. (2021), Duan et al. (2021)
 - Options: Ilhan et al. (2021), Cao et al. (2021)
 - **Stocks**: Oesteich and Tsiakas (2015), Bansal et al. (2017), Hong et al. (2019), Görgen et al. (2019), Bolton & Kacperczyk (2021a, b), Hsu et al. (2021), Pastor et al. (2021)

|御 | (臣) (臣)

Related literature

- **Olimate Finance empirical literature** (Giglio et al., 2021a)
 - Real estate: Bernstein et al. (2019), Baldauf et al. (2020), Giglio et al. (2021b)
 - Bonds: Painter (2020), Seltzer et al. (2020), Goldsmith-Pinkham et al. (2021), Duan et al. (2021)
 - Options: Ilhan et al. (2021), Cao et al. (2021)
 - **Stocks**: Oesteich and Tsiakas (2015), Bansal et al. (2017), Hong et al. (2019), Görgen et al. (2019), Bolton & Kacperczyk (2021a, b), Hsu et al. (2021), Pastor et al. (2021)

2 Textual analysis in finance (Gentzkow et al., 2019)

- *Market-wide climate factors*: Engle et al. (2020), Huynh and Xia (2020), Alekseev et al. (2021)
- *Firm-specific climate factors*: Kölbel et al. (2020), Li et al. (2020) and Sautner et al. (2020, 2021)

・ロト ・聞ト ・ ほト ・ ほト

Related literature

- Olimate Finance empirical literature (Giglio et al., 2021a)
 - Real estate: Bernstein et al. (2019), Baldauf et al. (2020), Giglio et al. (2021b)
 - Bonds: Painter (2020), Seltzer et al. (2020), Goldsmith-Pinkham et al. (2021), Duan et al. (2021)
 - Options: Ilhan et al. (2021), Cao et al. (2021)
 - **Stocks**: Oesteich and Tsiakas (2015), Bansal et al. (2017), Hong et al. (2019), Görgen et al. (2019), Bolton & Kacperczyk (2021a, b), Hsu et al. (2021), Pastor et al. (2021)

2 Textual analysis in finance (Gentzkow et al., 2019)

- *Market-wide climate factors*: Engle et al. (2020), Huynh and Xia (2020), Alekseev et al. (2021)
- *Firm-specific climate factors*: Kölbel et al. (2020), Li et al. (2020) and Sautner et al. (2020, 2021)

Onstruction of accurate ESG ratings (Berg et_al., 2020).

Labeling Topics: Global warming

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Labeling Topics: International summits

Topics: Correlations

	U.S. Climate policy	Int'l summits	Global warming	Natural disasters	mktrf	hml	smb	rmw	cma	umd
U.S. Climate policy	1.00	0.30	0.27	0.18	-0.02	-0.02	0.01	0.02	-0.02	-0.00
Int'l summits	0.30	1.00	0.31	0.24	-0.01	0.01	0.00	0.02	-0.01	-0.00
Global warming	0.27	0.31	1.00	0.34	-0.01	-0.01	-0.01	0.02	-0.01	0.01
Natural disasters	0.18	0.24	0.34	1.00	-0.02	-0.03	-0.02	0.02	-0.01	0.04
mktrf	-0.02	-0.01	-0.01	-0.02	1.00	0.06	0.12	-0.44	-0.28	-0.30
hml	0.02	0.01	-0.01	-0.03	0.06	1.00	-0.18	0.06	0.45	-0.33
smb	0.01	0.00	-0.01	-0.02	0.12	-0.18	1.00	-0.35	-0.05	0.13
rmw	0.02	0.02	0.02	0.02	-0.44	0.06	-0.35	1.00	0.26	0.17
cma	-0.02	-0.01	-0.01	-0.01	-0.28	0.45	-0.05	0.26	1.00	0.11
umd	-0.00	-0.00	0.01	0.04	-0.30	-0.33	0.13	0.17	0.11	1.00

1 Low correlations \Rightarrow LDA has successfully dissected climate risks

2 Why the low correlations? Long-term vs. Short-term effects.

э

• • = • • = •

< 一型

Asset pricing tests: Narrative factor (Quintile)

2000-2018	2000-2012	2012-2018				
Panel A: Market model						
-0.23	-0.01	-0.71				
(-0.77)	(-0.02)	(-1.52)				
Panel B: FF 3F model						
-0.58***	-0.20	-1.05***				
(-2.64)	(-0.78)	(-3.67)				
Panel C: FFC model						
-0.48**	-0.24	-0.93***				
(-2.30)	(-1.05)	(-2.86)				
Panel D: FF 5F model						
-0.39*	-0.16	-0.69**				
(-1.89)	(-0.62)	(-2.53)				
Panel E: FF 5F + momentum						
-0.26	-0.05	-0.60**				
(-1.20)	(-0.19)	(-2.08)				

Faccini, Matin & Skiadopoulos

æ

< Ξ > < Ξ >

< 一型

Do climate policy factors conflate EPU / Political risks?

• Conditional bivariate sorts (Bali et al., 2017)

Faccini, Matin & Skiad

• Control variables: EPU (Baker et al., 2016), Political risk (Hassan et al., 2019)

First control variable:	EPU	PRisk	
	Panel A: Market model		
Textual	0.6**	0.71**	
	(2.09)	(2.44)	
Narrative	-0.65	-0.17	
	(-1.55)	(-0.38)	
	Panel B: FF 3F model		
Textual	0.63**	0.7***	
	(2.54)	(2.84)	
Narrative	-0.96***	-0.84***	
	(-3.78)	(-2.75)	
	Panel C: FFC model		
Textual	0.43***	0.42**	
	(3.06)	(2.2)	
Narrative	-0.89***	-0.65**	
	(-2.68)	(-2.14)	
	Panel D: FF 5F model		
Textual	0.56**	0.46*	
	(2.31)	(1.76)	
Narrative	-0.53**	-0.46**	
	(-2.45)	(-2.17)	
F	Panel E: FF 5F + momentum		
Textual	0.43**	0.54***	
	(2.58)	(3.06)	
Narrative	-0.69***	-0.57**	たり目とい
los	Dissecting Climate Risks		

-28