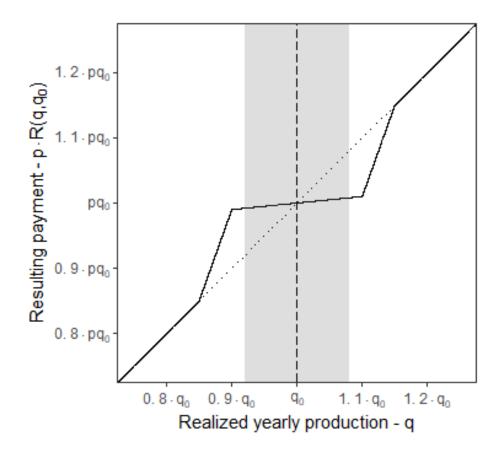


Pitfalls of Insuring Production Risk

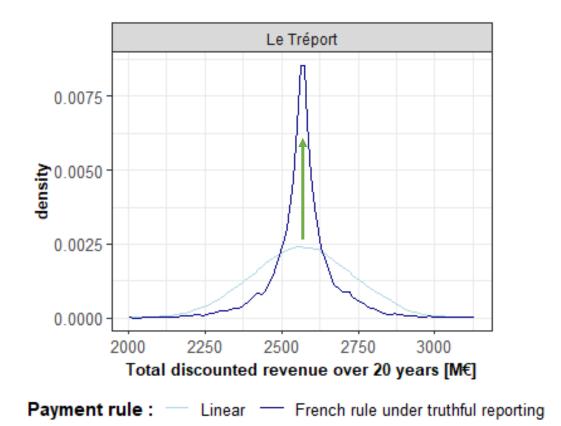
A Case Study on some Wind Power Auctions in France

Lamy Laurent, Leblanc Clément

Feed-in-Tariffs and Auctions for Renewables

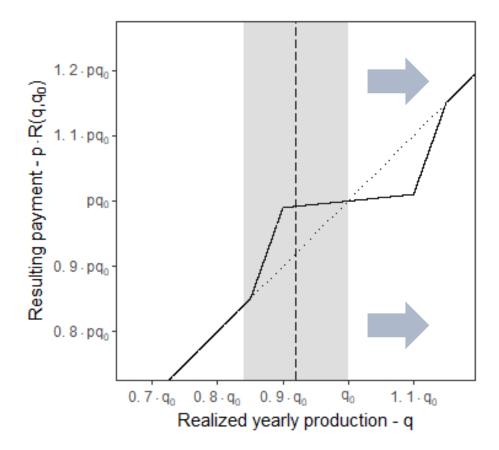

Widespread mechanism to support renewable electricity development

- *Feed-in-Tariffs:* Fixed price paid to eligible renewable producers
- Awarded through Auctions: Eligible producers/power plant projects asking for the lowest price are selected by the auctioneer

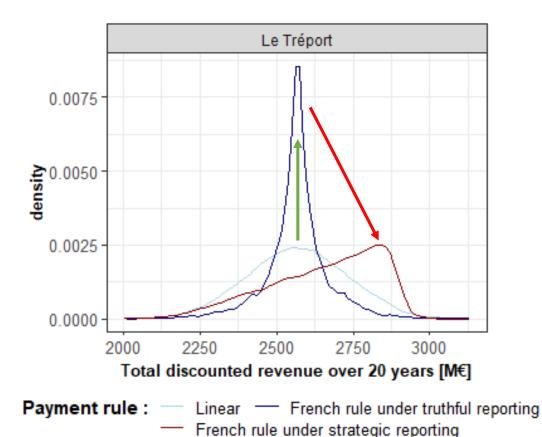

Innovative contract design motivating our study

- In 2011 and 2013, France auctioned away 6 offshore wind sites
- Insurance against production risk was provided through a modified "payment rule" lowering payment variability around a reference production:
 - Bidders were asked to self-report their expected yearly production (or equivalently their average capacity factor)
 - Yearly payments vary very little as long as actual yearly production falls within +/- 10% of the stated expected production

French Payment Rule with truthful bidders



Payment Rule used for French Offshore Wind Power Auctions in 2011 and 2013



Firm's Revenue distribution with a standard contract and with the French payment rule

French Payment Rule with strategic bidders

Payment Rule used for French Offshore Wind Power Auctions in 2011 and 2013

Firm's Revenue distribution with a standard contract and with the French payment rule

Overview

1 Introduction: Why insure renewables against production risk?

2 A Model of Production Insuring Payment Rules

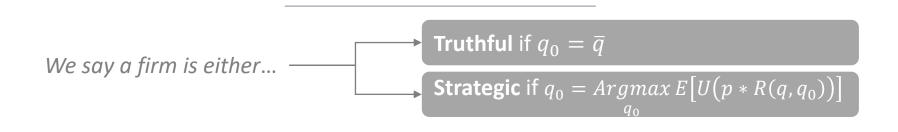
- **3** Consequences for the French Offshore Wind Auctions
- **4** Can we improve Production Insuring Payment Rules ?

5 Conclusion

The Baseline Model

A buyer organizes an auction settling a procurement contract with the winning firm before knowing the quantity of good produced (which is subject to an ex post risk)

Firms


- Firms' production: $q \sim f(.)$ with $E[q] = \overline{q}$
- Firms' payoff function: U(.)
- Firms' initial investment cost: C

The Auction

- Bids are composed of a price p and a reference production q_0
- The lowest price bid is selected

The Contract

- The contract is characterized by a **payment rule** $R(q, q_0)$
- The firm is paid (ex-post): $p * R(q, q_0)$

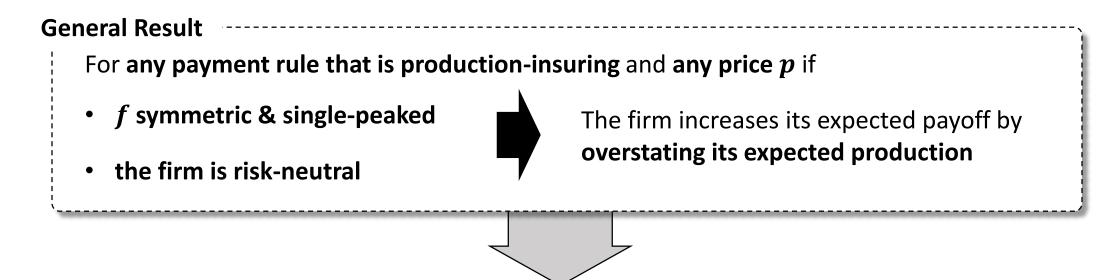
Production Insuring Payment Rules – A Definition

-- Definition

A Payment Rule R(.,.) is production-insuring if

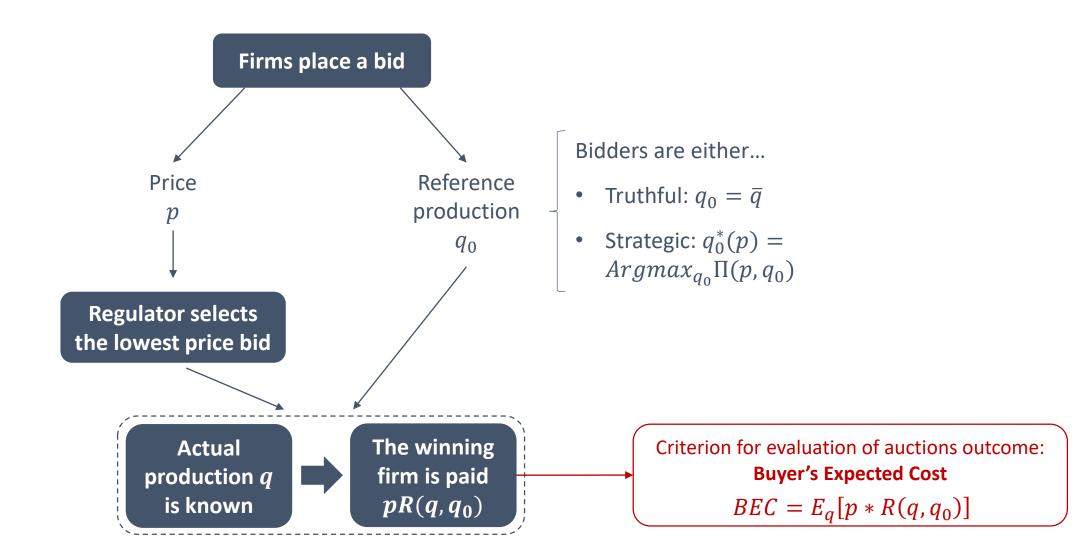
 $\forall f$ symmetric

- If U(.) is linear : $E[U(p * R(q, \overline{q}))] = E[U(p * q)]$
- $\forall p > 0$ $\forall U(.)$ concave

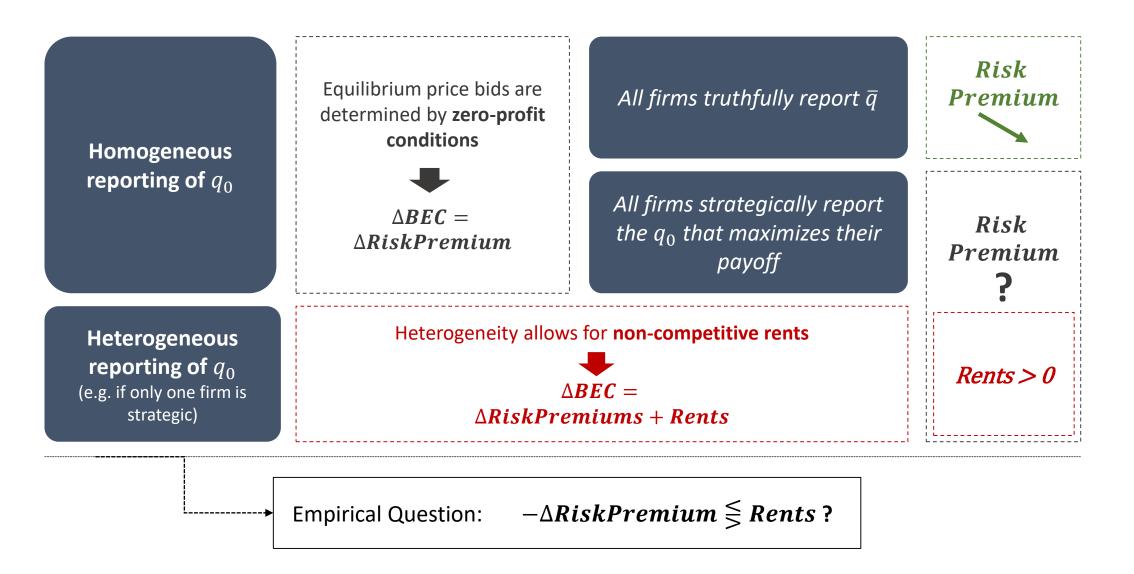

- Production insuring payment rules do indeed lower the risk premium when firms are truthfully report their expected production as q_0
- In particular, it can be checked that the French payment rule is production insuring according to this definition

"Do production insuring payment rules lower the buyer's cost compared to the linear contract?"

(i.e. the contract where $R(q, q_0) = q$)


- Yes if all firms truthfully report their expected production as q₀, but what happens in presence of strategic bidders ?
- Why do we take the linear contract as a benchmark:
 - From a **positive perspective**: commonly used (beyond the RES-E application)
 - From a **normative perspective**: the optimal contract is linear in the quantity produced if the principal values the output linearly and bidders are risk neutral

Incentives to strategically report q₀



- In general, overstating q_0^* implies $E[R(q, q_0)] > E[q]$ (even with risk-averse bidders)
- Deception effect: if the firm overstates its expected production, the expected payment per unit made by the buyer is higher than $p\,$

The Auction Game

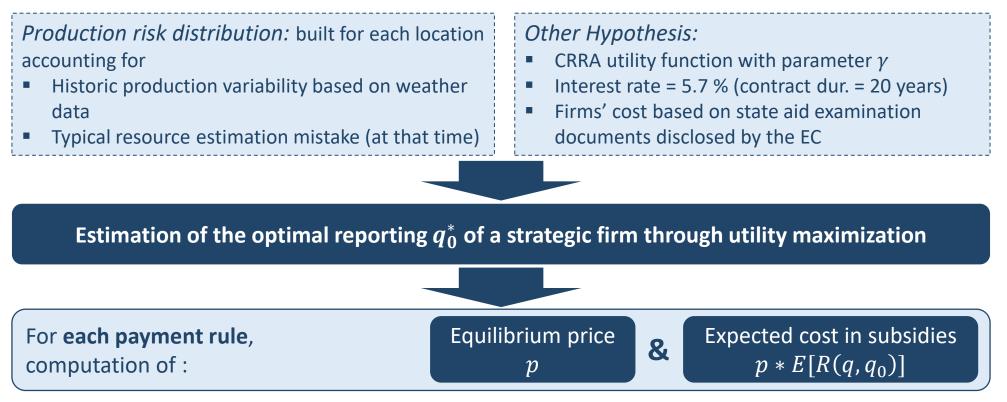
Consequences of a Production-Insuring Payment Rule

Overview

1 Introduction: Why insure renewables against production risk?

2 A Model of Production Insuring Payment Rules

3 Consequences for the French Offshore Wind Auctions

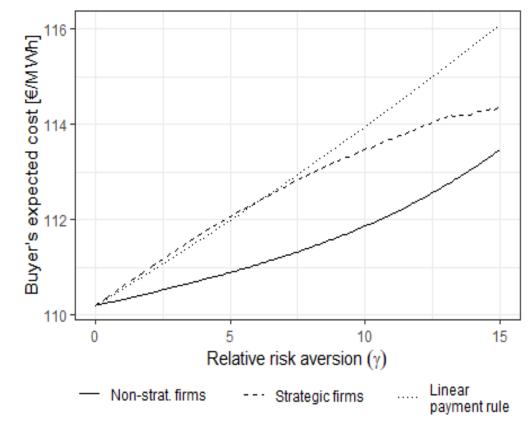

4 Can we improve Production Insuring Payment Rules ?

5 Conclusion

Calibration on the French Offshore Wind Auctions

Objective – Estimate the French regulator's potential loss due to the productioninsuring payment rule it employed

Method:

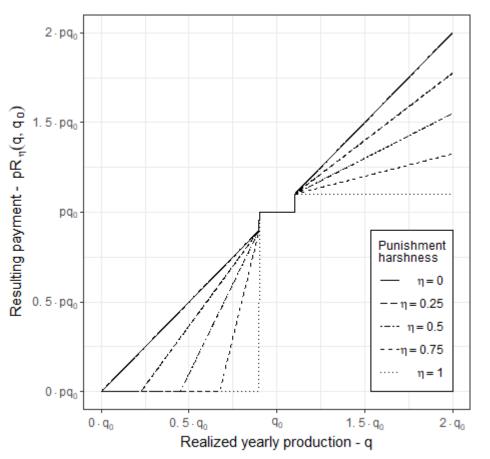


Impact on the Buyer's Expected Cost

Considering a standard risk aversion ($\gamma = 1$), Simulation for 5 offshore wind sites

Linear Contract	Risk premium vary between 0.29 - 0.36 %
French Rule with truthful bidders	The risk premium is divided by 2
French Rule with strategic bidders	These gains are lost
French Rule with only one strategic bidder (worst scenario)	The strategic bidder captures a rent 15 times larger than the potential gain if all firms were truthful

Simulation for Courseulles Site (Normandy)



Overview

- **1** Introduction: Why insure renewables against production risk?
- **2** A Model of Production Insuring Payment Rules
- **3** Consequences for the French Offshore Wind Auctions
- **4** Can we improve Production Insuring Payment Rules ?

5 Conclusion

New class of payment rules parameterized by (w, η) , with payment depending on production being...

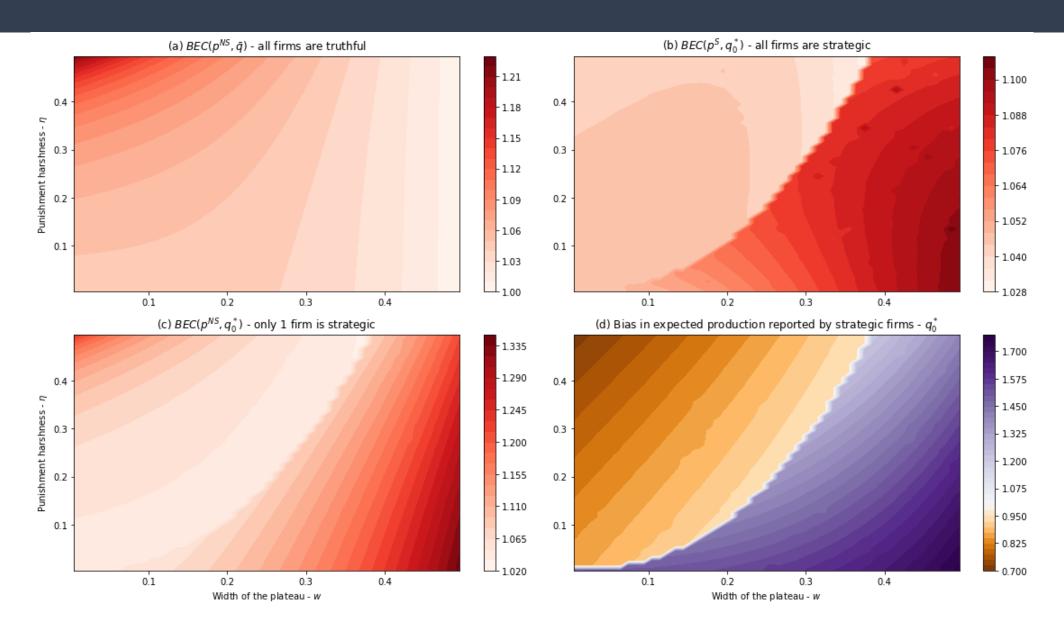
- Flat within w % around reported expected production q_0
- Punished with intensity η out of this interval

payment increase (resp. decrease) all the more slowly (resp. rapidly) that η is high when above (resp. below) the flat part

Simulation of firms' best response for

- Risk-averse firms with CRRA ($\gamma = 1$)
- Production q :
 - **normally distributed** with standard deviation equal to 20% of the mean
 - uniformly distributed on $[0.5 \ \overline{q}, 1.5 \ \overline{q}]$

Auction Outcome with Punishments


	Normal Distribution of q	Uniform Distribution of q
All firms are truthful	Wider insurance (w) and lower punishments (η) brings smaller risk premiums	
Strategic reporting of expected production	 Existence of a set of strategy-proof payment rules (w, η) performing better than average Optimal report of expected production is continuous in w and η 	 No strategy-proof set (w, η) Existence of a discontinuity regarding optimal report of expected production w.r.t. w and η
All firms are strategic Only one firm is strategic	No payment rule bring a better outcome than a linear contract	Slightly smaller insurance/harsher punishments compared to the discontinuity result in smaller buyer's expected cost than the linear contract

Auction's outcomes

(b) BEC(p⁵, q₀^{*}) - all firms are strategic (a) BEC(p^{NS}, q
) - all firms are truthful 2 1 1.062 Stronger punishment -1.084 - 1.056 0.4 0.4 -1.072 5 - 1.050 Punishment harshness - 1.060 0.3 0.3 - 1.044 - 1.048 1.038 0.2 0.2 -1.036 1.032 -1.024 0.1 0.1 - 1.026 - 1.012 - 1.000 1.020 0.3 0.1 0.2 0.3 0.4 0.1 0.2 0.4 (c) BEC(p^{NS}, q₀^{*}) - only 1 firm is strategic (d) Expected production reported by strategic firms - q_0^* 3 4 1.64 -1.44 - 1.54 Strategy-proof - 1.38 0.4 0.4 set of payment 1.44 Punishment harshness - η -1.32 rules 1.34 0.3 0.3 -1.26 - 1.24 - 1.20 0.2 0.2 - 1.14 -1.14 - 1.04 0.1 0.1 - 1.08 0.94 1.02 - 0.84 0.1 0.1 0.2 0.3 0.4 0.2 0.3 0.4 Width of the plateau - w Width of the plateau - w

Larger Insurance

Auction's outcomes with Uniformly Distributed Production

Overview

- **1** Introduction: Why insure renewables against production risk?
- **2** A Model of Production Insuring Payment Rules
- **3** Consequences for the French Offshore Wind Auctions
- **4** Can we improve Production Insuring Payment Rules ?

5 Conclusion

Extensions

Beyond the specific framework of our model, our conclusions can be extended in the following directions:

- A **mixed strategy equilibrium** is derived when firms being strategic or truthful is subject to a given probability α
- Similar conclusions can be reached with
 - Additive payment rules (in the form $A(p) * R(q, q_0) + b(p)$) instead of multiplicative
 - Non-zero variable costs when they are observable
- An equivalent phenomenon can be derived in a **moral hazard** model where firms lower the quality of their project in reaction to the insurance provided by the buyer
- Asymmetry between firms imply different conclusions depending on whether the dominant firm and competing firm are truthful or strategic
- Costly manipulation would mitigate over-reporting but would incur wasteful spending devoted to falsification of q_0

Conclusion

For the design of subsidies in RES-E auctions

- Low risk premiums, then low benefits from risk premium reduction
 Firms could largely benefit from manipulation, while inflating public
- cost
- Alternative designs: multi-year contracts in Brazil adjust when the observed average production consistently depart from q_0

Relevance for contingent auction beyond RES-E

- Insurance against other resource availability risk, e.g. for oil, minerals or timber auctions
- Insurance against demand uncertainty, e.g. for transportation infrastructure or public transportation (see Engel, Fischer & Galetovic, 2001)
- Insurance against cost overruns, e.g. for construction procurements

Thank you for your attention

Contact: cleancegmail.com; <a href="mailto:laurent.laure

Related Literature

Auctions & procurements with ex post risks

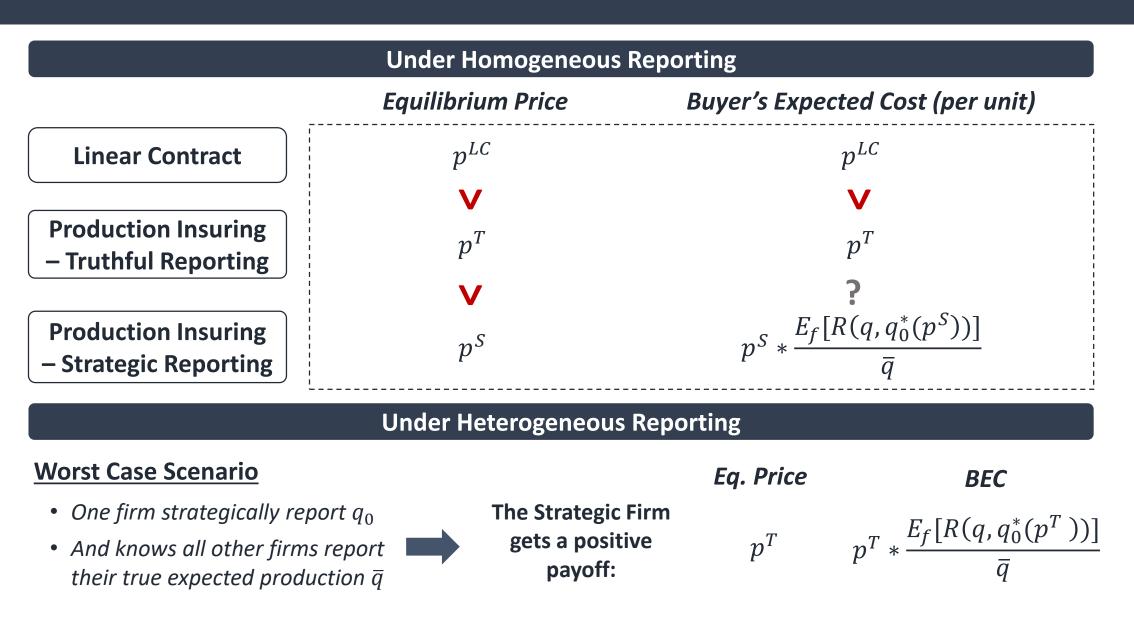
- Risk premiums
- Informational rents in contingent auctions

Manipulations in auctions

- Skewed bidding in scaling auctions and procurements
- Phantom/Shill/Cover bidding
- Heterogeneous renegotiation abilities

- Engel, Fischer, Galetovic (2001)
- Eso White (2004)
- Hansen (1985)
- DeMarzo, Kremer, Skrzypacz (2005)
- Skrzypacz (2013) Survey
- Athey, Levin (2001)
- Agarwal, Athey, Yang (2009)
- Luo, Takahashi (2019)
- Yokoo, Sakurai, Matsubara (2004)
- Lamy (2013)
- Ryan (2020)

Overestimation under additional assumptions


Adding more structure, including assumptions that:

- The payment is constant within a range around q_0 and proportional to quantity outside this range
- The firm has a constant relative risk aversion (CRRA = γ)

We can derive that:

- **1** Firms with higher risk aversion report a higher q_0^*
- 2 Firms report a higher q_0^* when facing a less risky production distribution
- 3 A wider range of insurance pushes firms to report a higher q_0^* (under the additional hypothesis that $\gamma \ge 1$)

Auction's equilibrium

A Proxy of the Risk faced by Offshore Wind Bidders

- Raw Data: Electricity generation simulated for each of the 6 offshore wind projects, based on historic weather data from 2000 to 2018 (from https://www.renewables.ninja/)
- Recombinations at the quarter level: Random draws of one of each quarter to obtain a larger sample of one-year long observations
- Drawing of full life-time observation: Random draws of 20 yearslong series from the previous sample
- Misestimation risk: A time-persistent normal noise is added, whose spread accounts for a 5% mean absolute error in line with common estimation mistakes made until recently in the industry

5 000 observations sample of the distribution of the lifetime production of the power plant

Payoff of the firm $E\left|U\left(\sum_{t=1}^{20} \frac{p * R(q_t, q_0) - OC}{(1+r)^t}\right)\right| - U(IC)$

About 100 000 different one-year long observations

We choose to draw 5 000 life-time long observations