PATILEA Valentin

< Back to ILB Patrimony
Topics of productions
Affiliations
  • 2020 - 2021
    Centre de recherche en économie et statistique
  • 2012 - 2018
    Institut de recherche mathématique de Rennes
  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2007
  • Adaptive optimal estimation of irregular mean and covariance functions.

    Steven GOLOVKINE, Nicolas KLUTCHNIKOFF, Valentin PATILEA
    2021
    We propose straightforward nonparametric estimators for the mean and the covariance functions of functional data. Our setup covers a wide range of practical situations. The random trajectories are, not necessarily differentiable, have unknown regularity, and are measured with error at discrete design points. The measurement error could be heteroscedastic. The design points could be either randomly drawn or common for all curves. The definition of our nonparametric estimators depends on the local regularity of the stochastic process generating the functional data. We first propose a simple estimator of this local regularity which takes strength from the replication and regularization features of functional data. Next, we use the "smoothing first, then estimate" approach for the mean and the covariance functions. The new nonparametric estimators achieve optimal rates of convergence. They can be applied with both sparsely or densely sampled curves, are easy to calculate and to update, and perform well in simulations. Simulations built upon a real data example on household power consumption illustrate the effectiveness of the new approach.
Affiliations are detected from the signatures of publications identified in scanR. An author can therefore appear to be affiliated with several structures or supervisors according to these signatures. The dates displayed correspond only to the dates of the publications found. For more information, see https://scanr.enseignementsup-recherche.gouv.fr