Une description de l'offre et de la demande par réaction-diffusion fractionnelle.

Auteurs Date de publication
2018
Type de publication
Article de journal
Résumé Nous suggérons que la large distribution des échelles de temps sur les marchés financiers pourrait être un ingrédient crucial pour reproduire la dynamique réaliste des prix dans les modèles stylisés basés sur les agents. Nous proposons un modèle de réaction-diffusion fractionnaire pour la dynamique de la liquidité latente sur les marchés financiers, où les agents sont très hétérogènes en termes de leurs fréquences caractéristiques. Plusieurs caractéristiques de notre modèle se prêtent à un traitement analytique exact. Nous constatons en particulier que l'impact est une fonction concave du volume de transactions (alias la "loi de l'impact à racine carrée"), comme dans la limite de diffusion normale. Cependant, le noyau d'impact décroît comme t -β avec β = 1/2 dans le cas diffusif, ce qui est incompatible avec l'efficacité du marché. Dans le cas sub-diffusif, l'exposant de décroissance β prend une valeur quelconque dans [0, 1/2], et peut être réglé pour correspondre à la valeur empirique β ≈ 1/4. Des simulations numériques confirment nos résultats théoriques. Plusieurs extensions du modèle sont suggérées.
Éditeur
Springer Science and Business Media LLC
Thématiques de la publication
  • ...
  • Pas de thématiques identifiées
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr