Un nouvel algorithme séquentiel pour l'approximation L2 et application à l'intégration de Monte-Carlo.

Auteurs
Date de publication
2014
Type de publication
report
Résumé Nous concevons un nouvel algorithme stochastique (appelé SALT) qui approxime séquentiellement une fonction donnée dans L2 par rapport à une mesure de probabilité, en utilisant un échantillon fini de la distribution. En augmentant les ensembles de fonctions d'approximation et l'effort de simulation, nous calculons une approximation L2 avec une précision de plus en plus grande. L'effort de simulation est réglé d'une manière robuste qui assure la convergence dans des conditions assez générales. Ensuite, nous appliquons SALT pour construire des variables de contrôle efficaces pour une intégration numérique précise. Des exemples et des expériences numériques soutiennent l'analyse mathématique.
Thématiques de la publication
  • ...
  • Pas de thématiques identifiées
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr