Voyage au cœur des EDSRs du second ordre et autres problèmes contemporains de mathématiques financières.

Auteurs Date de publication
2011
Type de publication
Thèse
Résumé Cette thèse présente deux principaux sujets de recherche indépendants, le dernier étant décliné sous la forme de deux problèmes distincts. Dans toute la première partie de la thèse, nous nous intéressons à la notion d’équations différentielles stochastiques rétrogrades du second ordre (dans la suite 2EDSR), introduite tout d’abord par Cheridito, Soner, Touzi et Victoir [25] puis reformulée récemment par Soner, Touzi et Zhang [107]. Nous prouvons dans un premier temps une extension de leurs résultats d’existence et d’unicité lorsque le générateur considéré est seulement continu et à croissance linéaire. Puis, nous poursuivons notre étude par une nouvelle extension au cas d’un générateur quadratique. Ces résultats théoriques nous permettent alors de résoudre un problème de maximisation d’utilité pour un investisseur dans un marché incomplet, à la fois car des contraintes sont imposées sur ses stratégies d’investissement, et aussi parce que la volatilité du marché est supposée être inconnue. Nous prouvons dans notre cadre l’existence de stratégies optimales, caractérisons la fonction valeur du problème grâce à une EDSR du second ordre et résolvons explicitement certains exemples qui nous permettent de mettre en exergue les modifications induites par l’ajout de l’incertitude de volatilité par rapport au cadre habituel. Nous terminons cette première partie en introduisant la notion d’EDSR du second ordre avec réflexion sur un obstacle. Nous prouvons l’existence et l’unicité des solutions de telles équations, et fournissons une application possible au problème de courverture d’options Américaines dans un marché à volatilité incertaine. Le premier chapitre de la seconde partie de cette thèse traite d’un problème de pricing d’options dans un modèle où la liquidité du marché est prise en compte. Nous fournissons des développements asymptotiques de ces prix au voisinage de liquidité infinie et mettons en lumière un phénomène de transition de phase dépendant de la régularité du payoff des options considérées. Quelques résultats numériques sont également proposés. Enfin, nous terminons cette thèse par l’étude d’un problème Principal/Agent dans un cadre d’aléa moral. Une banque (qui joue le rôle de l’agent) possèdant un certain nombre de prêts, souhaite échanger leurs intérêts contre des flux de capitaux. La banque peut influencer les probabilités de défaut de ces emprunts en exerçant ou non une activité de surveillance coûteuse. Ces choix de la banque ne sont connus que d’elle seule. Des investisseurs (qui jouent le rôle de principal) souhaitent mettre en place des contrats qui maximisent leur utilité tout en incitant implicitement la banque à exercer une activité de surveillance constante. Nous résolvons ce problème de contrôle optimal explicitement, décrivons le contrat optimal associé ainsi que ses implications économiques et fournissons quelques simulations numériques.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr