Méthodes de points intérieurs pour l'optimisation des systèmes de grande taille.

Auteurs
Date de publication
1993
Type de publication
Thèse
Résumé Les nouvelles méthodes de points intérieurs jouent aujourd'hui un rôle de plus en plus important dans l'optimisation des systèmes de grande taille. Dans cette thèse nous étudions dans une première partie, du point de vue théorique et numérique, une extension d'un algorithme de points intérieurs pour la programmation quadratique convexe et non convexe. Celle-ci utilise l'idée de la région de confiance que l'on peut expliciter grâce à une transformation affine. Sous certaines hypothèses nous démontrons des résultats sur la convergence globale et sur la vitesse de convergence de l'algorithme. Nous donnons aussi une version pratique de cet algorithme, basée sur une généralisation de la méthode de Lanczos pour la résolution des systèmes linéaires indéfinis. Celle-ci donne dans la pratique des résultats très encourageants. Dans la seconde partie, nous étudions du point de vue théorique une extension d'un autre algorithme de points intérieurs pour l'optimisation non linéaire avec contraintes linéaires. Cette extension utilise l'idée de la réduction d'une fonction potentiel après une transformation affine de l'ensemble admissible. Des résultats sur la convergence globale et sur la complexité de l'algorithme sont donnés.
Thématiques de la publication
  • ...
  • Pas de thématiques identifiées
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr