Résolution numérique des équations différentielles stochastiques rétrogrades.

Auteurs
Date de publication
1997
Type de publication
Thèse
Résumé La premiere partie de cette these a pour objet la construction d'un algorithme probabiliste pour resoudre numeriquement des equations differentielles stochastiques retrogrades (edsr) dans le cas markovien, ou l'equation est associee a un processus forward solution d'une eds. Nous decrivons un premier algorithme qui repose sur une double discretisation de l'equation, en temps et en espace, et utilise des simulations de trajectoires du processus forward. La discretisation en temps est une extension du schema d'euler pour les eds, ou l'on a remplace le mouvement brownien par une marche aleatoire. On introduit ensuite une approximation supplementaire en projetant a chaque instant de discretisation le processus forward sur l'ensemble des trajectoires simulees. On evite ainsi une complexite algorithmique qui serait exponentielle. Nous montrons une vitesse de convergence pour cet algorithme dans le cadre de la dimension 1. Nous presentons aussi une variante de ce algorithme, adaptee a des edsr dont les parametres sont moins reguliers, en remplacant notamment le schema d'euler dans la discretisation du processus forward par le schema de milshtein. Cela nous permet ensuite d'ecrire un algorithme de discretisation d'edsr reflechies. Dans une seconde partie, nous analysons l'approximation de macmillan, et barone-adesi et whaley, utilisee en finance pour estimer le prix d'une option americaine. En ecrivant le prix de l'option americaine comme la solution d'une certaine equation differentielle stochastique retrograde reflechie, nous obtenons une borne generale pour l'erreur de l'approximation et nous montrons que l'approximation converge vers le prix exact quand la volatilite du sous-jacent tend vers zero. Nous proposons ensuite une deuxieme demonstration, plus elementaire, de ce resultat asymptotique, en faisant intervenir le prix d'un put perpetuel.
Thématiques de la publication
  • ...
  • Pas de thématiques identifiées
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr