Equations de transport et mécanique des fluides.

Auteurs
Date de publication
1997
Type de publication
Thèse
Résumé L'objet de cette thèse est l'analyse mathématique de modèles issus de la mécanique des fluides. L'étude est centrée principalement sur les équations de Navier-Stokes incompressibles inhomogènes et les équations de Navier-Stokes compressibles isentropiques. La première partie est consacrée aux équations différentielles ordinaires associées à des champs de vecteurs a coefficients irréguliers, typiquement à dérivées intégrables. R. J. Di Perna et P. -L. Lions ont été pionniers dans l'étude de champs de vecteurs à régularité W#1#,#1 et à divergence bornée, en montrant l'existence et l'unicité d'un flot X vérifiant la plupart des propriétés des flots de champs de vecteurs réguliers, valables cependant pour presque tout point initial. L'objet de la première partie est d'étendre cette théorie à des champs à divergence non bornée. La preuve repose sur la méthode des solutions normalisées pour les équations de transport, introduites par R. J. Di Perna et P. -L. Lions. Dans la continuité des résultats précédents, on montre d'autre part un théorème d'existence de solutions plus fortes correspondant à des données initiales dans W#1#,#m (m > 1) pour #t +b. * = 0, le champ de vecteurs b associe étant supposé de régularité Sobolev W#s#+#1#,#p avec sp = n. Ces résultats sont ensuite appliqués a une preuve d'unicité des solutions des équations de Navier-Stokes incompressibles inhomogènes en dimension 2. Dans la deuxième partie de ce travail, on s'intéresse à des modèles de fluides incompressibles. On considère une famille de fluides incompressibles non miscibles indexes par 1,. . . , m dans un ouvert de r#n (n 2). Ces fluides sont caractérisés par leur densité i#1im et leur viscosité #i#1##im. Le premier chapitre traite des questions d'existence globale de solutions faibles pour les équations de Navier-Stokes incompressibles lorsque le domaine est non borné. On étudie ensuite la régularité des écoulements plans multiphasiques, en énonçant les résultats en fonction de la dispersion relative des viscosités, tout en tenant compte de l'éventuelle présence de poches de vide dans le milieu fluide. Le troisième chapitre est consacré a quelques remarques sur la régularité des solutions faibles d'une équation issue d'un modèle simplifié de magnétohydrodynamique, couplant les équations de Navier-Stokes incompressibles et les équations de maxwell. Enfin, on étudie les équations de Navier-Stokes modélisant l'évolution d'un fluide compressible isentropique. Les travaux de P. -L. Lions assurent l'existence globale en temps de solutions faibles sous certaines hypothèses sur la loi de pression. En dimension n = 2 ou 3, on peut montrer des résultats de régularité en temps petit pour des densités initiales s'annulant. Lorsque n = 2, on obtient des résultats globaux en temps, sous réserve que la densité reste bornée. On utilise pour cela une estimation logarithmique, démontrée dans le contexte des modèles incompressibles précédemment cités. Dans le second chapitre, on analyse la régularité des solutions faibles en dimension n 2, en montrant une estimation à priori qui donne des renseignements sur la régularité en temps du champ des vitesses.
Thématiques de la publication
  • ...
  • Pas de thématiques identifiées
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr