Equations différentielles stochastiques rétrogrades réfléchies à coefficients continus, solutions faibles d'EDPS et d'EDDSR.

Auteurs
Date de publication
1998
Type de publication
Thèse
Résumé Cette thèse a pour objet, d'une part, l'étude des équations différentielles stochastiques rétrogrades réfléchies (EDDSR) et d'autre part, la preuve de l'existence et l'unicité des solutions d'équations aux dérivées partielles stochastiques quasi-linéaires (EDPS), formulées dans un sens faible . en utilisant des solutions généralisées des équations différentielles doublement stochastiques rétrogrades (EDDSR). Dans la première partie, on s'attache à montrer l'existence d'une solution pour l'EDSR réfléchie sur une ou deux barrières à coefficient non Lipschitz. On s'interroge en effet sur les hypothèses minimales à inclure pour obtenir ce résultat. Dans la seconde partie, on s'intéresse à l'EDPS quasi-lineaire suivante : U/T = LU (T, X) + F(T, X, U(T, X), (*U)(T, X))DT + H(T, X, U(T, X), (*U)(T, X))B/T(T), U(T, X) = G(X) ou G est une distribution. Compte tenu des résultats déjà connus sur ce sujet, nous répondons aux questions suivantes: - dans le cas ou les coefficients F(S, X, Y, Z) et H(S, X, Y, Z) sont linéaires en (Y, Z) et appartiennent à un espace de type Sobolev en X, existe-t-il une formulation faible des EDDSR pour donner une formule de Feynman-Kac pour la solution d'EDPS ? - dans le cas ou les coefficients sont non-linéaires, peut-on montrer l'existence et l'unicite d'une solution de l'EDPS et ainsi généraliser les résultats obtenus par Barles et Lesigne (1997) dans le cadre des EDP standards ?.
Thématiques de la publication
    Pas de thématiques identifiées
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr