Equations différentielles stochastiques rétrogrades réfléchies à coefficients continus, solutions faibles d'EDPS et d'EDDSR.

Auteurs
Date de publication
1998
Type de publication
Thèse
Résumé Cette thèse a pour objet, d'une part, l'étude des équations différentielles stochastiques rétrogrades réfléchies (EDDSR) et d'autre part, la preuve de l'existence et l'unicité des solutions d'équations aux dérivées partielles stochastiques quasi-linéaires (EDPS), formulées dans un sens faible . en utilisant des solutions généralisées des équations différentielles doublement stochastiques rétrogrades (EDDSR). Dans la première partie, on s'attache à montrer l'existence d'une solution pour l'EDSR réfléchie sur une ou deux barrières à coefficient non Lipschitz. On s'interroge en effet sur les hypothèses minimales à inclure pour obtenir ce résultat. Dans la seconde partie, on s'intéresse à l'EDPS quasi-lineaire suivante : U/T = LU (T, X) + F(T, X, U(T, X), (*U)(T, X))DT + H(T, X, U(T, X), (*U)(T, X))B/T(T), U(T, X) = G(X) ou G est une distribution. Compte tenu des résultats déjà connus sur ce sujet, nous répondons aux questions suivantes: - dans le cas ou les coefficients F(S, X, Y, Z) et H(S, X, Y, Z) sont linéaires en (Y, Z) et appartiennent à un espace de type Sobolev en X, existe-t-il une formulation faible des EDDSR pour donner une formule de Feynman-Kac pour la solution d'EDPS ? - dans le cas ou les coefficients sont non-linéaires, peut-on montrer l'existence et l'unicite d'une solution de l'EDPS et ainsi généraliser les résultats obtenus par Barles et Lesigne (1997) dans le cadre des EDP standards ?.
Thématiques de la publication
  • ...
  • Pas de thématiques identifiées
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr