Couverture approchée optimale des options européennes.

Auteurs
Date de publication
2001
Type de publication
Thèse
Résumé Cette thèse porte sur l'étude de la couverture à temps discret des options européennes. Dans la première partie, on introduit des restrictions de couverture dans le modèle de black-scholes : on suppose que le market-maker ne peut se couvrir qu'un nombre maximum fixe de fois à des instants aléatoires de son choix. On identifie la stratégie qui minimise la variance de l'erreur de couverture. On montre que la variance minimale est solution d'une suite de problèmes d'arrêt optimal qui conduisent à des inéquations variationnelles (i. V. ). Via la technique des solutions de viscosité, on étudie l'existence et l'unicité de solutions de ces i. V. Et on montre la convergence de la solution du problème discretise par la méthode des différences finies vers la solution du problème continu. Enfin, on étend ces résultats à d'autres critères. Dans la deuxième partie, on détermine la plus petite richesse initiale nécessaire pour surcouvrir l'option dans le modèle de black-scholes dans le contexte réel suivant : le market-maker ne peut se couvrir qu'à des instants aléatoires de son choix. Lorsque le nombre de couvertures est fixe, on montre que ce prix correspond à la stratégie buy-and-hold pour un call, ou la stratégie correspondante pour toute option avec un payoff continue. Dans le cas ou le nombre peut dépendre de la trajectoire du spot et que le delta de l'option de black-scholes de l'actif contingent est un processus à variation finie (ce qui exclut toutes les options standards en général), on montre que le plus petit prix est le prix de black-scholes de l'option.
Thématiques de la publication
  • ...
  • Pas de thématiques identifiées
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr