Interprétations probabilistes d'opérateurs sous forme divergence et analyse de méthodes numériques probabilistes associées.

Auteurs
Date de publication
2004
Type de publication
Thèse
Résumé L'analyse et l'approximation de solutions des équations différentielles stochastiques (E. D. S. ) possédant des coefficients discontinus constituent un sujet qui n'a pas été traité de façon pleinement satisfaisante. Ce problème devient particulièrement motivant lorsque l'on cherche à approcher, par des méthodes de Monte-Carlo, les solutions de certaines équations aux dérivées partielles (E. D. P. ) qui font également intervenir des coefficients discontinus. C'est par exemple le cas, bien connu en physique, des E. D. P. S avec opérateur sous forme divergence (O. F. D. ) dont les coefficients sont discontinus et que nous étudions dans ce mémoire : les discontinuités traduisent alors les irrégularités du milieu dans lequel évolue le système étudié. Cette thèse propose de nouveaux résultats pour l'analyse et l'approximation de solutions d'E. D. S. Qui sont reliées à un O. F. D. Dont les coefficients sont discontinus. Les aspects statistiques des modèles en jeu sont également étudiés.
Thématiques de la publication
  • ...
  • Pas de thématiques identifiées
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr