Modèles multi-échelles pour les fluides viscoélastiques.

Auteurs
  • LELIEVRE Tony
  • JOURDAIN Benjamin
  • LE BRIS Claude
  • LE TALLEC Patrick
  • OTTO Felix
  • VACHERAND Jean michel
  • DEBUSSCHE Arnaud
  • PERTHAME Benoit
Date de publication
2004
Type de publication
Thèse
Résumé Ce travail porte principalement sur l'analyse mathématique de modèles multi-échelles pour la simulation de fluides polymériques. Ces modèles couplent, au niveau microscopique, une description moléculaire de l'évolution des chaînes de polymère (sous forme d'une équation différentielle stochastique) avec, au niveau macroscopique, les équations de conservation de la masse et de la quantité de mouvement pour le solvant (sous forme d'équations aux dérivées partielles). Le chapitre 1 introduit les modèles et donne les principaux résultats obtenus. Dans les chapitres 2, 4, 5 et 7 on montre en quel sens les équations sont bien posées pour divers modèles de polymère, en considérant soit des écoulements homogènes, soit des écoulements cisaillés plans. Dans les chapitres 2, 3, 6 et 7, on analyse et on prouve la convergence de méthodes numériques pour ces modèles. Enfin, le chapitre 8 concerne le comportement en temps long du système. Une deuxième partie de ce document est constituée de trois chapitres portant sur un travail en magnétohydrodynamique (MHD), en collaboration avec l'industrie. Le chapitre 9 est une introduction à la problématique ainsi qu'aux méthodes numériques utilisées. Le chapitre 10 décrit un nouveau cas-test en MHD. Enfin, le chapitre 11 donne une analyse de la stabilité du schéma numérique utilisé.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr