Modèles de séries temporelles à coefficients dépendants du temps.

Auteurs
Date de publication
2004
Type de publication
Thèse
Résumé Dans cette thèse, nous étudions les propriétés probalistes et/ou statistiques de modèles linéaires ou non-linéaires de séries temporelles à coefficients dépendant du temps. La première partie de la thèse est dévolue à la statistique des modèles ARMA dont les coefficients varient en fonction d'événements récurrents, mais non-périodiques. Les propriétés asymptotiques (convergence forte et normalité) des estimateurs des moindres carrés sont établies. Le cas particulier des modèles ARMA à changement de régime Markoviens est ensuite considéré. La seconde partie de la thèse étudie l'influence asymptotique de la correction par la moyenne des séries temporelles sur l'estimation par moindres carrés de modèles ARMA périodiques. Dans la dernière partie de la thèse, nous étendons nos recherches à des modèles bilinéaires à coefficients périodiques. Les résultats obtenus sont régulièrement illustrés à distance finie à partir d'expériences de Monte Carlo.
Thématiques de la publication
  • ...
  • Pas de thématiques identifiées
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr