Sur l'algorithme de tir pour les problèmes de commande optimale avec contraintes sur l'état.

Auteurs
  • HERMANT Audrey
  • BONNANS Frederic
  • ALLAIRE Gregoire
  • PETIT Nicolas
  • TRELAT Emmanuel
  • VISSIERE David
  • QUINCAMPOIX Marc
  • ZEIDAN Vera
Date de publication
2008
Type de publication
Thèse
Résumé Cette thèse s'intéresse au problème de commande optimale (déterministe) d'une équation différentielle ordinaire soumise à une ou plusieurs contraintes sur l'état, d'ordres quelconques, dans le cas où la condition forte de Legendre-Clebsch est satisfaite. Le principe du minimum de Pontryaguine fournit une condition d'optimalité nécessaire bien connue. Dans cette thèse, on obtient premièrement une condition d'optimalité suffisante du second ordre la plus faible possible, c'est-à-dire qu'elle est aussi proche que possible de la condition nécessaire du second ordre et caractérise la croissance quadratique. Cette condition nous permet d'obtenir une caractérisation du caractère bien posé de l'algorithme de tir en présence de contraintes sur l'état. Ensuite on effectue une analyse de stabilité et de sensibilité des solutions lorsque l'on perturbe les données du problème. Pour des contraintes d'ordre supérieur ou égal à deux, on obtient pour la première fois un résultat de stabilité des solutions ne faisant aucune hypothèse sur la structure de la trajectoire. Par ailleurs, des résultats sur la stabilité structurelle des extrémales de Pontryaguine sont donnés. Enfin, ces résultats d'une part sur l'algorithme de tir et d'autre part sur l'analyse de stabilité nous permettent de proposer, pour des contraintes sur l'état d'ordre un et deux, un algorithme d'homotopie dont la nouveauté est de déterminer automatiquement la structure de la trajectoire et d'initialiser les paramètres de tir associés.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr