Existence de la valeur uniforme dans les jeux répétés.

Auteurs
Date de publication
2012
Type de publication
Thèse
Résumé Dans cette thèse, nous nous intéressons à un modèle général de jeux répétés à deux joueurs et à somme nulle et en particulier au problème de l’existence de la valeur uniforme. Un jeu répété a une valeur uniforme s’il existe un paiement que les deux joueurs peuvent garantir, dans tous les jeux commençant aujourd’hui et suffisamment longs, indépendamment de la longueur du jeu. Dans un premier chapitre, on étudie les cas d’un seul joueur, appelé processus de décision Markovien partiellement observable, et des jeux où un joueur est parfaitement informé et contrôle la transition. Il est connu que ces jeux admettent une valeur uniforme. En introduisant une nouvelle distance sur les probabilités sur le simplexe de Rm, on montre l’existence d’une notion plus forte où les joueurs garantissent le même paiement sur n’importe quel intervalle de temps suffisamment long et non pas uniquement sur ceux commençant aujourd’hui. Dans les deux chapitres suivants, on montre l’existence de la valeur uniforme dans deux cas particuliers de jeux répétés : les jeux commutatifs dans le noir, où les joueurs n’observent pas l'état mais l’état est indépendant de l’ordre dans lequel les actions sont jouées, et les jeux avec un contrôleur plus informé, où un joueur est plus informé que l’autre joueur et contrôle l'évolution de l'état. Dans le dernier chapitre, on étudie le lien entre la convergence uniforme des valeurs des jeux en n étapes et le comportement asymptotique des stratégies optimales dans ces jeux en n étapes. Pour chaque n, on considère le paiement garanti pendant ln étapes avec 0 < l < 1 par les stratégies optimales pour n étapes et le comportement asymptotique lorsque n tend vers l’infini.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr