Analyse de sensibilité pour les problèmes de contrôle optimal. Contrôle optimal stochastique avec une contrainte de probabilité.

Auteurs
Date de publication
2013
Type de publication
Thèse
Résumé Cette thèse est divisée en deux parties. Dans la première partie, nous étudions des problèmes de contrôle optimal déterministes avec contraintes et nous nous intéressons à des questions d'analyse de sensibilité. Le point de vue que nous adoptons est celui de l'optimisation abstraite. les conditions d'optimalité nécessaires et suffisantes du second ordre jouent alors un rôle crucial et sont également étudiées en tant que telles. Dans cette thèse, nous nous intéressons à des solutions fortes. De façon générale, nous employons ce terme générique pour désigner des contrôles localement optimaux pour la norme L1. En renforçant la notion d'optimalité locale utilisée, nous nous attendons à obtenir des résultats plus forts. Deux outils sont utilisés de façon essentielle : une technique de relaxation, qui consiste à utiliser plusieurs contrôles simultanément, ainsi qu'un principe de décomposition, qui est un développement de Taylor au second ordre particulier du lagrangien. Les chapitres 2 et 3 portent sur les conditions d'optimalité nécessaires et suffisantes du second ordre pour des solutions fortes de problèmes avec contraintes pures, mixtes et sur l'état final. Dans le chapitre 4, nous réalisons une analyse de sensibilité pour des problèmes relaxés avec des contraintes sur l'état final. Dans le chapitre 5, nous réalisons une analyse de sensibilité pour un problème de production d'énergie nucléaire. Dans la deuxième partie, nous étudions des problèmes de contrôle optimal stochastique sous contrainte en probabilité. Nous étudions une approche par programmation dynamique, dans laquelle le niveau de probabilité est vu comme une variable d'état supplémentaire. Dans ce cadre, nous montrons que la sensibilité de la fonction valeur par rapport au niveau de probabilité est constante le long des trajectoires optimales. Cette analyse nous permet de développer des méthodes numériques pour des problèmes en temps continu. Ces résultats sont présentés dans le chapitre 6, dans lequel nous étudions également une application à la gestion actif-passif.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr