Élargissement de la filtration avec applications aux finances.

Auteurs
  • ROMO ROMERO Ricardo
  • JEANBLANC Monique
  • LIM Thomas
  • CHEVALIER Etienne
  • HILLAIRET Caroline
  • BLANCHET SCALLIET Christophette
  • REVEILLAC Anthony
  • KHARROUBI Idris
  • MNIF Mohamed
  • YING Jiao
Date de publication
2016
Type de publication
Thèse
Résumé Cette thèse se compose de quatre parties indépendantes. Le fil conducteur de celle-ci est le grossissement de filtration. Dans la première partie, nous présentons des résultats classiques de grossissement de filtration en temps discret. Nous étudions quelques exemples dans le cadre du grossissement initial de filtration. Dans le cadre du grossissement progressif nous donnons des conditions pour obtenir la propriété d'immersion des martingales. Nous donnons également diverses caractérisations des pseudo temps d'arrêt et nous énonçons des propriétés pour les temps honnêtes.Dans la deuxième partie, nous nous intéressons à la détermination du prix de produits à annuités variables dans le cadre de l'assurance vie. Pour cela nous considérons deux modèles, dans ces deux modèles nous considérons que le marché est incomplet et nous adoptons l'approche par prix d'indifférence. Dans le premier modèle nous supposons que l'assuré procède à des retraits aléatoires et nous calculons la prime d'indifférence par des méthodes standards en contrôle stochastique. Nous sommes conduits à résoudre des équations différentielles stochastiques rétrogrades (EDSR) avec un saut. Nous fournissons un théorème de vérification et nous donnons les stratégies optimales associées à nos problèmes de contrôle. De ceux-ci, nous tirons une méthode de calcul pour obtenir la prime d'indifférence. Dans le second modèle nous proposons la même approche que dans le premier modèle mais nous supposons que l'assuré effectue des retraits qui correspondent au pire cas pour l'assureur. Nous sommes alors amenés à traiter un problème de max-min.Dans la troisième partie, nous étudions la relation des solutions d'EDSR dans deux filtrations différentes. Nous étudions alors la relation entre ces deux solutions. Nous appliquons ces résultats pour obtenir le prix d'indifférence dans les deux filtrations, c'est-à-dire le prix auquel un agent aurait le même niveau d'utilité attendue en utilisant des informations supplémentaires.Dans la quatrième partie, nous considérons des équations différentielles stochastiques rétrogrades avancées (EDSRAs) avec un saut. Nous étudions l'existence et l'unicité d'une solution à ces EDSRAs. Pour cela nous utilisons la décomposition des processus à sauts liée au grossissement progressif de filtration pour nous ramener à l'étude d'EDSRAs browniennes avant et après le temps de saut.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr