Sur une interprétation probabiliste des équations de Keller-Segel de type parabolique-parabolique.

Auteurs
  • TOMASEVIC Milica
  • TALAY Denis
  • DEBUSSCHE Arnaud
  • DEBUSSCHE Arnaud
  • MELEARD Sylvie
  • RUSSO Francesco
  • VEBER Amandine
  • DELARUE Francois
  • MELEARD Sylvie
  • RUSSO Francesco
Date de publication
2018
Type de publication
Thèse
Résumé En chimiotaxie, le modèle parabolique-parabolique classique de Keller-Segel en dimension d décrit l’évolution en temps de la densité d'une population de cellules et de la concentration d'un attracteur chimique. Cette thèse porte sur l’étude des équations de Keller-Segel parabolique-parabolique par des méthodes probabilistes. Dans ce but, nous construisons une équation différentielle stochastique non linéaire au sens de McKean-Vlasov dont le coefficient dont le coefficient de dérive dépend, de manière singulière, de tout le passé des lois marginales en temps du processus. Ces lois marginales couplées avec une transformation judicieuse permettent d’interpréter les équations de Keller-Segel de manière probabiliste. En ce qui concerne l'approximation particulaire il faut surmonter une difficulté intéressante et, nous semble-t-il, originale et difficile chaque particule interagit avec le passé de toutes les autres par l’intermédiaire d'un noyau espace-temps fortement singulier. En dimension 1, quelles que soient les valeurs des paramètres de modèle, nous prouvons que les équations de Keller-Segel sont bien posées dans tout l'espace et qu'il en est de même pour l’équation différentielle stochastique de McKean-Vlasov correspondante. Ensuite, nous prouvons caractère bien posé du système associé des particules en interaction non markovien et singulière. Nous établissons aussi la propagation du chaos vers une unique limite champ moyen dont les lois marginales en temps résolvent le système Keller-Segel parabolique-parabolique. En dimension 2, des paramètres de modèle trop grands peuvent conduire à une explosion en temps fini de la solution aux équations du Keller-Segel. De fait, nous montrons le caractère bien posé du processus non-linéaire au sens de McKean-Vlasov en imposant des contraintes sur les paramètres et données initiales. Pour obtenir ce résultat, nous combinons des techniques d'analyse d’équations aux dérivées partielles et d'analyse stochastique. Finalement, nous proposons une méthode numérique totalement probabiliste pour approcher les solutions du système Keller-Segel bi-dimensionnel et nous présentons les principaux résultats de nos expérimentations numériques.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr