Processus de Volterra et applications en finance.

Auteurs
Date de publication
2021
Type de publication
Thèse
Résumé Cette thèse est consacrée à l'étude des processus de Volterra et leur utilisation en finance. Nous commençons par rappeler certaines propriétés de ces processus que nous utiliserons tout au long de notre travail. La seconde partie porte sur l'étude d'un problème d'arrêt optimal, la valorisation d'une option Américaine dans un modèle de Heston-Volterra. Pour certains choice de paramètres, ce modèle est une version dite rugueuse du bien connu modèle de Heston. Nous nous concentrons sur la convergence des prix dans une suite de modèles de grande dimension, approchant le modèle original, vers les prix dans le modèle limite de Volterra. Dans le troisième chapitre de ce travail, nous étudions les moments de processus polynômiaux de Volterra. Nous proposons des méthodes de calcul des moments de ces processus et montrons qu'ils ont certaines propriétés en commun avec les diffusions polynômiales classiques. Nous concluons ce travail en nous intéressant dans le quatrième chapitre à des problèmes plus statistiques. Nous abordons le problème d'estimation du paramètre de vitesse de retour à la moyenne d'un processus d'Ornstein-Uhlenbeck de Volterra. Nous montrons que nos estimateurs, basés sur des observations continues ou discrètes du processus sont fortement consistant.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr