Optimisation de portefeuille sur les marchés financiers avec information partielle.

Auteurs
Date de publication
2008
Type de publication
Thèse
Résumé Cette thèse traite - en trois essais - de problèmes de choix de portefeuille en situation d’information partielle, thématique que nous présentons dans une courte introduction. Les essais développés abordent chacun une particularité de cette problématique. Le premier (coécrit avec M. Jeanblanc et V. Lacoste) traite la question du choix de la stratégie optimale pour un problème de maximisation d’utilité terminale lorsque l’évolution des prix est modélisée par un processus de Itô-Lévy dont la tendance et l’intensité des sauts ne sont pas observées. L’approche consiste à réécrire le problème initial comme un problème réduit dans la filtration engendrée par les prix. Cela nécessite la dérivation des équations de filtrage non-linéaire, que nous développons pour un processus de Lévy. Le problème est ensuite résolu en utilisant la programmation dynamique par les équations de Bellman et de HJB. Le second essai aborde dans un cadre gaussien la question du coût de l’incertitude, que nous définissons comme la différence entre les stratégies optimales (ou les richesses maximales) d’un agent parfaitement informé et d’un agent partiellement informé. Les propriétés de ce coût de l’information sont étudiées dans le cadre des trois formes standard de fonctions d’utilités et des exemples numériques sont présentés. Enfin, le troisième essai traite la question du choix de portefeuille quand l’information sur les prix de marché n’est disponible qu’à des dates discrètes et aléatoires. Cela revient à supposer que la dynamique des prix suit un processus marqué. Dans ce cadre, nous développons les équations de filtrage et réécrivons le problème initial dans sa forme réduite dans la filtration discrète des prix. Les stratégies optimales sont ensuite calculées en utilisant le calcul de Malliavin pour des mesures aléatoires et une extension de la formule de Clark-Ocone-Haussman est à cette fin présentée.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr