Méthodes de contrôle stochastique pour le transport optimal et schémas numériques probabilistes pour les EDP.

Auteurs Date de publication
2011
Type de publication
Thèse
Résumé Cette thèse porte sur les méthodes numériques pour les équations aux dérivées partielles (EDP) non-linéaires dégénérées, ainsi que pour des problèmes de contrôle d'EDP non-linéaires résultants d'un nouveau problème de transport optimal. Toutes ces questions sont motivées par des applications en mathématiques financières. La thèse est divisée en quatre parties. Dans une première partie, nous nous intéressons à la condition nécessaire et suffisante de la monotonie du thêta-schéma de différences finies pour l'équation de diffusion en dimension un. Nous donnons la formule explicite dans le cas de l'équation de la chaleur, qui est plus faible que la condition classique de Courant-Friedrichs-Lewy (CFL). Dans une seconde partie, nous considérons une EDP parabolique non-linéaire dégénérée et proposons un schéma de type ''splitting'' pour la résoudre. Ce schéma réunit un schéma probabiliste et un schéma semi-lagrangien. Au final, il peut être considéré comme un schéma Monte-Carlo. Nous donnons un résultat de convergence et également un taux de convergence du schéma. Dans une troisième partie, nous étudions un problème de transport optimal, où la masse est transportée par un processus d'état type ''drift-diffusion'' controllé. Le coût associé est dépendant des trajectoires de processus d'état, de son drift et de son coefficient de diffusion. Le problème de transport consiste à minimiser le coût parmi toutes les dynamiques vérifiant les contraintes initiales et terminales sur les distributions marginales. Nous prouvons une formule de dualité pour ce problème de transport, étendant ainsi la dualité de Kantorovich à notre contexte. La formulation duale maximise une fonction valeur sur l'espace des fonctions continues bornées, et la fonction valeur correspondante à chaque fonction continue bornée est la solution d'un problème de contrôle stochastique optimal. Dans le cas markovien, nous prouvons un principe de programmation dynamique pour ces problèmes de contrôle optimal, proposons un algorithme de gradient projeté pour la résolution numérique du problème dual, et en démontrons la convergence. Enfin dans une quatrième partie, nous continuons à développer l'approche duale pour le problème de transport optimal avec une application à la recherche de bornes de prix sans arbitrage des options sur variance étant donnés les prix des options européennes. Après une première approximation analytique, nous proposons un algorithme de gradient projeté pour approcher la borne et la stratégie statique correspondante en options vanilles.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr