Some Contributions on Probabilistic Interpretation For Nonlinear Stochastic PDEs.

Auteurs Date de publication
2014
Type de publication
Thèse
Résumé L'objectif de cette thèse est l'étude de la représentation probabiliste des différentes classes d'EDPSs non-linéaires(semi-linéaires, complètement non-linéaires, réfléchies dans un domaine) en utilisant les équations différentielles doublement stochastiques rétrogrades (EDDSRs). Cette thèse contient quatre parties différentes. Nous traitons dans la première partie les EDDSRs du second ordre (2EDDSRs). Nous montrons l'existence et l'unicité des solutions des EDDSRs en utilisant des techniques de contrôle stochastique quasi- sure. La motivation principale de cette étude est la représentation probabiliste des EDPSs complètement non-linéaires. Dans la deuxième partie, nous étudions les solutions faibles de type Sobolev du problème d'obstacle pour les équations à dérivées partielles inteégro-différentielles (EDPIDs). Plus précisément, nous montrons la formule de Feynman-Kac pour l'EDPIDs par l'intermédiaire des équations différentielles stochastiques rétrogrades réfléchies avec sauts (EDSRRs). Plus précisément, nous établissons l'existence et l'unicité de la solution du problème d'obstacle, qui est considérée comme un couple constitué de la solution et de la mesure de réflexion. L'approche utilisée est basée sur les techniques de flots stochastiques développées dans Bally et Matoussi (2001) mais les preuves sont beaucoup plus techniques. Dans la troisième partie, nous traitons l'existence et l'unicité pour les EDDSRRs dans un domaine convexe D sans aucune condition de régularité sur la frontière. De plus, en utilisant l'approche basée sur les techniques du flot stochastiques nous démontrons l'interprétation probabiliste de la solution faible de type Sobolev d'une classe d'EDPSs réfléchies dans un domaine convexe via les EDDSRRs. Enfin, nous nous intéressons à la résolution numérique des EDDSRs à temps terminal aléatoire. La motivation principale est de donner une représentation probabiliste des solutions de Sobolev d'EDPSs semi-linéaires avec condition de Dirichlet nul au bord. Dans cette partie, nous étudions l'approximation forte de cette classe d'EDDSRs quand le temps terminal aléatoire est le premier temps de sortie d'une EDS d'un domaine cylindrique. Ainsi, nous donnons les bornes pour l'erreur d'approximation en temps discret. Cette partie se conclut par des tests numériques qui démontrent que cette approche est effective.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr