Discrétisation de processus à des temps d’arrêt et Quantification d'incertitude pour des algorithmes stochastiques.

Auteurs
Date de publication
2018
Type de publication
Thèse
Résumé Cette thèse contient deux parties qui étudient deux sujets différents. Les Chapitres 1-4 sont consacrés aux problèmes de discrétisation de processus à des temps d’arrêt. Dans le Chapitre 1 on étudie l'erreur de discrétisation optimale pour des intégrales stochastiques par rapport à une semimartingale brownienne multidimensionnelle continue. Dans ce cadre on établit une borne inférieure trajectorielle pour la variation quadratique renormalisée de l'erreur. On fournit une suite de temps d’arrêt qui donne une discrétisation asymptotiquement optimale. Cette suite est définie comme temps de sortie d'ellipsoïdes aléatoires par la semimartingale. Par rapport aux résultats précédents on permet une classe de semimartingales assez large. On démontre qui la borne inférieure est exacte. Dans le Chapitre 2 on étudie la version adaptative au modèle de la discrétisation optimale d’intégrales stochastique. Dans le Chapitre 1 la construction de la stratégie optimale utilise la connaissance du coefficient de diffusion de la semimartingale considérée. Dans ce travail on établit une stratégie de discrétisation asymptotiquement optimale qui est adaptative au modèle et n'utilise pas aucune information sur le modèle. On démontre l'optimalité pour une classe de grilles de discrétisation assez générale basée sur les technique de noyau pour l'estimation adaptative. Dans le Chapitre 3 on étudie la convergence en loi des erreurs de discrétisation renormalisées de processus d’Itô pour une classe concrète et assez générale de grilles de discrétisation données par des temps d’arrêt. Les travaux précédents sur le sujet considèrent seulement le cas de dimension 1. En plus ils concentrent sur des cas particuliers des grilles, ou démontrent des résultats sous des hypothèses abstraites. Dans notre travail on donne explicitement la distribution limite sous une forme claire et simple, les résultats sont démontré dans le cas multidimensionnel pour le processus et pour l'erreur de discrétisation. Dans le Chapitre 4 on étudie le problème d'estimation paramétrique pour des processus de diffusion basée sur des observations à temps d’arrêt. Les travaux précédents sur le sujet considèrent que des temps d'observation déterministes, fortement prévisibles ou aléatoires indépendants du processus. Sous des hypothèses faibles on construit une suite d'estimateurs consistante pour une classe large de grilles d'observation données par des temps d’arrêt. On effectue une analyse asymptotique de l'erreur d'estimation. En outre, dans le cas du paramètre de dimension 1, pour toute suite d'estimateurs qui vérifie un TCL sans biais, on démontre une borne inférieure uniforme pour la variance asymptotique. on montre que cette borne est exacte. Les Chapitres 5-6 sont consacrés au problème de quantification d'incertitude pour des limites d'approximation stochastique. Dans le Chapitre 5 on analyse la quantification d'incertitude pour des limites d'approximation stochastique (SA). Dans notre cadre la limite est définie comme un zéro d'une fonction donnée par une espérance. Cette espérance est prise par rapport à une variable aléatoire pour laquelle le modèle est supposé de dépendre d'un paramètre incertain. On considère la limite de SA comme une fonction de cette paramètre. On introduit un algorithme qui s'appelle USA (Uncertainty for SA). C'est une procédure en dimension croissante pour calculer les coefficients de base d'expansion de chaos de cette fonction dans une base d'un espace de Hilbert bien choisi. La convergence de USA dans cet espace de Hilbert est démontré. Dans le Chapitre 6 on analyse le taux de convergence dans L2 de l'algorithme USA développé dans le Chapitre 5. L'analyse est non trivial à cause de la dimension infinie de la procédure. Le taux obtenu dépend du modèle et des paramètres utilisés dans l'algorithme USA. Sa connaissance permet d'optimiser la vitesse de croissance de la dimension dans USA.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr