STAZHYNSKI Uladzislau

< Retour à ILB Patrimoine
Affiliations
  • 2016 - 2019
    Centre de mathématiques appliquées
  • 2017 - 2018
    Communauté d'universités et établissements Université Paris-Saclay
  • 2017 - 2018
    Ecole doctorale de mathematiques hadamard (edmh)
  • 2017 - 2018
    Ecole Polytechnique
  • 2016 - 2017
    Département de mathématiques et applications de l'ENS
  • 2019
  • 2018
  • 2017
  • Quantification d'incertitude pour l'Approximation Stochastique.

    Stephane CREPEY, Gersende FORT, Emmanuel GOBET, Uladzislau STAZHYNSKI
    Actes de Conférence du Colloque GRETSI 2019 | 2019
    L'Approximation Stochastique est une procédure itérative pour le calcul d'un zero θ d'une fonction non explicite mais définie comme une espérance. C'est par exemple un outil numérique pour le calcul du maximum de vraisemblance dans des modèlesà données latentes "réguliers". Si la définition du modèle statistique est entachée d'une incertitude τ , dont on ne connaît qu'un a priori dπ(τ), alors les zeros dépendent de τ et la question naturelle est d'explorer leur distribution lorsque τ ∼ dπ. Dans ce papier, nous proposons un algorithme itératif basé sur un schéma d'Approximation Stochastique qui,à la limite, calcule θ (τ) pour tout τ et produit une caractérisation de sa distribution. et nousénonçons des conditions suffisantes pour la convergence de cet algorithme.
Les affiliations sont détectées à partir des signatures des publications identifiées dans scanR. Un auteur peut donc apparaître affilié à plusieurs structures ou tutelles en fonction de ces signatures. Les dates affichées correspondent seulement aux dates des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr