Quelques aspects du rôle central de la microstructure des marchés financiers : dynamique de la volatilité, négociation optimale et conception du marché.

Auteurs Date de publication
2020
Type de publication
Thèse
Résumé Cette thèse est organisée en trois parties. Dans la première on examine les relations entre la dynamique microscopique et macroscopique du marché en se concentrant sur les propriétés de la volatilité. Dans la deuxième partie on s'intéresse au contrôle optimal stochastique de processus ponctuels. Finalement dans la troisième partie on étudie deux problématiques de market design.On commence cette thèse par l'étude des liens entre le principe d'absence d'opportunité d'arbitrage et l'irrégularité de la volatilité. A l'aide d'une méthode de changement d'échelle on montre que l'on peut effectivement connecter ces deux notions par l'analyse du market impact des métaordres. Plus précisément on modélise le flux des ordres marchés en utilisant des procesus de Hawkes linéaires. Puis on montre que le principe d'absence d'opportunité d'arbitrage ainsi que l'existence d'un market impact non trivial impliquent que la volatilité est rugueuse et plus précisément qu'elle suit un modèle rough Heston. On examine ensuite une classe de modèles microscopiques où le flux d'ordre est un processus de Hawkes quadratique. L'objectif est d'étendre le modèle rough Heston à des modèles continus permettant de reproduire l'effet Zumbach. Finalement on utilise un de ces modèles, le modèle rough Heston quadratique, pour la calibration jointe des nappes de volatilité du SPX et du VIX.Motivé par l'usage intensif de processus ponctuels dans la première partie, on s'intéresse dans la deuxième au contrôle stochastique de processus ponctuels. Notre objectif est de fournir des résultats théoriques en vue d'applications en finance. On commence par considérer le cas du contrôle de processus de Hawkes. On prouve l'existence d'une solution puis l'on propose une méthode permettant d'appliquer ce contrôle en pratique. On examine ensuite les limites d'échelles de problèmes de contrôles stochastiques dans le cadre de modèles de dynamique de population. Plus exactement on considère une suite de modèles de dynamique d'une population discrète qui converge vers un modèle pour une population continue. Pour chacun des modèles on considère un problème de contrôle. On prouve que la suite des contrôles optimaux associés aux modèles discrets converge vers le contrôle optimal associé au modèle continu. Ce résultat repose sur la continuité, par rapport à différents paramètres, de la solution d'une équation différentielle schostatique rétrograde.Dans la dernière partie on s'intéresse à deux problèmatiques de market design. On examine d'abord la question de l'organisation d'un marché liquide de produits dérivés. En se concentrant sur un marché d'options, on propose une méthode en deux étapes pouvant facilement être appliquée en pratique. La première étape consiste à choisir les options qui seront listées sur le marché. Pour cela on utilise un algorithme de quantification qui permet de sélectionner les options les plus demandées par les investisseurs. On propose ensuite une méthode d'incitation tarifaire visant à encourager les market makers à proposer des prix attractifs. On formalise ce problème comme un problème de type principal-agent que l'on résoud explicitement. Finalement, on cherche la durée optimale d'une enchère pour les marchés organisés en enchères séquentielles, le cas de la durée nulle correspondant à celui d'une double enchère continue. On utilise un modèle où les market takers sont en compétition et on considère que la durée optimale est celle correspondant au processus de découverte du prix le plus efficace. Après avoir prouvé l'existence d'un équilibre de Nash pour la compétition entre les market takers, on applique nos résultats sur des données de marchés. Pour la plupart des actifs, la durée optimale se trouve entre 2 et 10 minutes.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr