Dynamique des populations : contrôle stochastique et modélisation hybride du cancer.

Auteurs
Date de publication
2014
Type de publication
Thèse
Résumé L'objectif de cette thèse est de développer la théorie du contrôle stochastique et ses applications en dynamique des populations. D'un point de vue théorique, nous présentons l'étude de problèmes de contrôle stochastique à horizon fini sur des processus de diffusion, de branchement non linéaire et de branchement-diffusion. Dans chacun des cas, nous raisonnons par la méthode de la programmation dynamique en veillant à démontrer soigneusement un argument de conditionnement analogue à la propriété de Markov forte pour les processus contrôlés. Le principe de la programmation dynamique nous permet alors de prouver que la fonction valeur est solution (régulière ou de viscosité) de l'équation de Hamilton-Jacobi-Bellman correspondante. Dans le cas régulier, nous identifions également un contrôle optimal markovien par un théorème de vérification. Du point de vue des applications, nous nous intéressons à la modélisation mathématique du cancer et de ses stratégies thérapeutiques. Plus précisément, nous construisons un modèle hybride de croissance de tumeur qui rend compte du rôle fondamental de l'acidité dans l'évolution de la maladie. Les cibles de la thérapie apparaissent explicitement comme paramètres du modèle afin de pouvoir l'utiliser comme support d'évaluation de stratégies thérapeutiques.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr