Jeux différentiels stochastiques non-Markoviens etdynamiques de Langevin à champ-moyen.

Auteurs Date de publication
2020
Type de publication
Thèse
Résumé Cette thèse se compose de deux parties indépendantes et la première regroupant deux problématiques distinctes. Dans la première partie, nous étudions d’abord le problème de Principal-Agent dans des systèmes dégénérés, qui apparaissent naturellement dans des environnements à l’observation partielle où l’Agent et le Principal n’observent qu’une partie du système. Nous présentons une approche se basant sur le principe du maximum stochastique, dont le but est d’étendre les travaux existants qui utilisent le principe de la programmation dynamique dans des systèmes non-dégénérés. D’abord nous résolvons le problème du Principal dans un ensembledes contrats élargi donné par la condition du premier ordre du problème de l’Agent sous forme d’une équation différentielle stochastique progressive-rétrograde (abrégée EDSPR) dépendante de la trajectoire. Ensuite nous utilisons la condition suffisante du problème de l’Agent pour vérifier que le contrat optimal obtenu est bien implémentable. Une étude parallèle est consacrée à l’existence et l’unicité de la solution d'EDSPRs dépendantes de la trajectoire dans le chapitre IV. Nous étendons la méthode de champ de découplage aux cas où les coefficients des équations peuvent dépendre de la trajectoire du processus forward. Nous démontrons également une propriété de stabilité pour ce genre d'EDSPRs. Enfin, nous étudions le problème de hasard moral avec plusieurs Principals. L’Agent ne peut travailler que pour un seul Principal à la fois et fait donc face à un problème de switching optimal. En utilisant la méthode de randomisation nous montrons que la fonction valeur de l’Agent et son effort optimal sont donnés par un processus d’Itô. Cette représentation nous aide à résoudre ensuite le problème du Principal lorsqu’il y a une infinité de Principals en équilibre selon un jeu à champ-moyen. Nous justifions la formulation à champ-moyen par un argument de propagation de chaos.La deuxième partie de cette thèse est constituée des chapitres V et VI. La motivation de ces travaux est de donner un fondement théorique rigoureux pour la convergence des algorithmes du type descente de gradient très souvent utilisés dans la résolution des problème non-convexes comme la calibration d’un réseau de neurones. Pour les problèmes non-convexes du type réseaux de neurones à une couche cachée, l’idée clé est de transformer le problème en un problème convexe en le relevant dans l’espace des mesures. Nous montrons que la fonction d’énergie correspondante admet un unique minimiseur qui peut être caractérisé par une condition du premier ordre utilisant la dérivation dans l’espace des mesures au sens de Lions. Nous présentons ensuite une analyse du comportement à long terme de la dynamique de Langevin à champ-moyen, qui possède une structure de flot de gradient dans la métrique de 2-Wasserstein. Nous montrons que le flot de la loi marginale induite par la dynamique de Langevin à champ-moyen converge vers une loi stationnaire en utilisant le principe d’invariance de La Salle, qui est le minimiseur de la fonction d’énergie.Dans le cas des réseaux de neurones profonds, nous les modélisons à l’aide d’un problème de contrôle optimal en temps continu. Nous donnons d’abord la conditiondu premier ordre à l’aide du principe de Pontryagin, qui nous aidera ensuiteà introduire le système d’équation de Langevin à champ-moyen, dont la mesure invariante correspond au minimiseur du problème de contrôle optimal. Enfin, avec la méthode de couplage par réflexion nous montrons que la loi marginale du système de Langevin à champ-moyen converge vers la mesure invariante avec une vitesse exponentielle.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr